A NOVEL-APPROACH TO THE SYNTHESIS OF NONDISPERSIVE WAVE PACKET SOLUTIONS TO THE KLEIN-GORDON AND DIRAC EQUATIONS

被引:46
作者
SHAARAWI, AM [1 ]
BESIERIS, IM [1 ]
ZIOLKOWSKI, RW [1 ]
机构
[1] UNIV CALIF LAWRENCE LIVERMORE NATL LAB,DIV ENGN RES,LIVERMORE,CA 94550
关键词
D O I
10.1063/1.528995
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A systematic approach to the derivation of exact nondispersive packet solutions to equations modeling relativistic massive particles is introduced. It is based on a novel bidirectional representation used to synthesize localized Brittingham-like solutions to the wave and Maxwell's equations. The theory is applied first to the Klein-Gordon equation; the resulting nondispersive solutions can be used as de Broglie wave packets representing localized massive scalar particles. The resemblance of such solutions to previously reported nondispersive wave packets is discussed and certain subtle aspects of the latter, especially those arising in connection to the correct choice of dispersion relationships and the definition of group velocity, are clarified. The results obtained for the Klein-Gordon equation are also used to provide nondispersive solutions to the Dirac equation which models spin 1/2 massive fermions. © 1990 American Institute of Physics.
引用
收藏
页码:2511 / 2519
页数:9
相关论文
共 23 条
[1]   PACKETLIKE SOLUTIONS OF THE HOMOGENEOUS-WAVE EQUATION [J].
BELANGER, PA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1984, 1 (07) :723-724
[2]   NON-SPREADING WAVE PACKETS [J].
BERRY, MV ;
BALAZS, NL .
AMERICAN JOURNAL OF PHYSICS, 1979, 47 (03) :264-267
[3]   A BIDIRECTIONAL TRAVELING PLANE-WAVE REPRESENTATION OF EXACT-SOLUTIONS OF THE SCALAR WAVE-EQUATION [J].
BESIERIS, IM ;
SHAARAWI, AM ;
ZIOLKOWSKI, RW .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (06) :1254-1269
[4]  
BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166
[5]   A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF HIDDEN VARIABLES .2. [J].
BOHM, D .
PHYSICAL REVIEW, 1952, 85 (02) :180-193
[6]   FOCUS WAVES MODES IN HOMOGENEOUS MAXWELL EQUATIONS - TRANSVERSE ELECTRIC MODE [J].
BRITTINGHAM, JN .
JOURNAL OF APPLIED PHYSICS, 1983, 54 (03) :1179-1189
[7]  
De Broglie L., 1964, CURRENT INTERPRETATI
[8]  
DEBROGLIE L, 1960, NONLINEAR WAVE MECHA
[9]  
FARGUE D, 1984, WAVE PARTICLE DUALIS
[10]   SPINOR FIELDS WITH ZERO MASS IN UNBOUNDED ISOTROPIC MEDIA [J].
HILLION, P .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1988, 27 (01) :57-71