A linear signal decomposition approach to affine invariant contour identification

被引:17
作者
Cyganski, D [1 ]
Vaz, RF [1 ]
机构
[1] WORCESTER POLYTECH INST,DEPT ELECT ENGN,MACHINE VIS LAB,WORCESTER,MA 01609
关键词
Affine invariance; Contour processing; Lie group theory; Object recognition; Orientation determination; Signal processing;
D O I
10.1016/0031-3203(95)00060-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Means for the identification of objects from contours despite affine transform induced distortions using a linear signal space decomposition are described. This technique also yields robust estimates of the 3-D rotations of a near planar object. The ability to determine object identity and orientation from a single model representation without iteration or combinatorial search proceeds from the use of affine invariant differential measures derived via Lie group theory. The technique is extremely robust owing to the error rejection properties of signal space projections. Results illustrating the resilience of the solutions in the presence of severe non-affine distortion and pixelization are given.
引用
收藏
页码:1845 / 1853
页数:9
相关论文
共 11 条
[1]  
Ballard DH, 1982, COMPUTER VISION
[2]  
BRUCKSTEIN A, 1991, INVARIANT SIGNATURES
[3]  
BRUCKSTEIN AM, 1990, DIFFERENTIAL INVARIA
[4]   APPLICATIONS OF TENSOR THEORY TO OBJECT RECOGNITION AND ORIENTATION DETERMINATION [J].
CYGANSKI, D ;
ORR, JA .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1985, 7 (06) :662-673
[5]  
CYGANSKI D, 1988, ADV COMPUTER VISION, V3, P101
[6]  
CYGANSKI D, 1987, 1ST P INT C COMP VIS, P496
[7]  
CYGANSKI D, 1985, MARC IEEE INT C AC S, P917
[8]  
CYGANSKI D, 1987, NOV SPIE CAMBR S OPT, P33
[9]  
Guggenheimer H.W., 1977, DIFFERENTIAL GEOMETR
[10]  
Pavlidis T., 1977, STRUCTURAL PATTERN R