ASYMPTOTIC BETHE-ANSATZ SOLUTION OF MULTICOMPONENT QUANTUM-SYSTEMS WITH 1/R2 LONG-RANGE INTERACTION

被引:101
作者
KAWAKAMI, N [1 ]
机构
[1] SWISS FED INST TECHNOL,CH-8093 ZURICH,SWITZERLAND
来源
PHYSICAL REVIEW B | 1992年 / 46卷 / 02期
关键词
D O I
10.1103/PhysRevB.46.1005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Asymptotic Bethe-ansatz solutions are obtained for one-dimensional quantum systems with a 1/r2 long-range interaction by generalizing Sutherland's method to multicomponent quantum systems. We obtain the solutions to the supersymmetric t-J model of Kuramoto and Yokoyama, the SU(nu) Haldane-Shastry model, and the multicomponent t-J model. The excitation spectrum as well as bulk quantities are computed analytically. Conformal properties of low-energy excitations are discussed in connection with Luttinger liquid theory.
引用
收藏
页码:1005 / 1014
页数:10
相关论文
共 39 条
[1]   UNIVERSAL TERM IN THE FREE-ENERGY AT A CRITICAL-POINT AND THE CONFORMAL ANOMALY [J].
AFFLECK, I .
PHYSICAL REVIEW LETTERS, 1986, 56 (07) :746-748
[2]   CLASS OF VARIATIONAL SINGLET WAVE-FUNCTIONS FOR THE HUBBARD-MODEL AWAY FROM HALF FILLING [J].
ANDERSON, PW ;
SHASTRY, BS ;
HRISTOPULOS, D .
PHYSICAL REVIEW B, 1989, 40 (13) :8939-8944
[3]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[4]  
BROTE HW, 1986, PHYS REV LETT, V56, P742
[5]   OPERATOR CONTENT OF TWO-DIMENSIONAL CONFORMALLY INVARIANT THEORIES [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1986, 270 (02) :186-204
[6]   INTEGRABLE VERTEX MODELS AND EXTENDED CONFORMAL-INVARIANCE [J].
DEVEGA, HJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (22) :L1089-L1095
[7]   STAGGERED SPIN AND STATISTICS IN THE SUPERSYMMETRIC T-J MODEL [J].
FORSTER, D .
PHYSICAL REVIEW LETTERS, 1989, 63 (19) :2140-2143
[8]   CRITICAL EXPONENTS FOR THE ONE-DIMENSIONAL HUBBARD-MODEL [J].
FRAHM, H ;
KOREPIN, VE .
PHYSICAL REVIEW B, 1990, 42 (16) :10553-10565
[9]  
FRAHM H, 1991, PHYS REV B, V43, P5663
[10]   CORRELATION-FUNCTIONS FOR HUBBARD-TYPE MODELS - THE EXACT RESULTS FOR THE GUTZWILLER WAVE-FUNCTION IN ONE DIMENSION [J].
GEBHARD, F ;
VOLLHARDT, D .
PHYSICAL REVIEW LETTERS, 1987, 59 (13) :1472-1475