TRANSFORMATION OF NONPOSITIVE SEMIDEFINITE CORRELATION-MATRICES

被引:84
作者
ROUSSEEUW, PJ [1 ]
MOLENBERGHS, G [1 ]
机构
[1] UNIV INSTELLING ANTWERP,DEPT MATH & COMP SCI,B-2610 WILRIJK,BELGIUM
关键词
EIGENVALUE METHOD; MISSING DATA; MULTIDIMENSIONAL SCALING; MULTIVARIATE PROBIT MODEL; ROBUST CORRELATIONS; SHRINKING;
D O I
10.1080/03610928308831068
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In multivariate statistics, estimation of the covariance or correlation matrix is of crucial importance. Computational and other arguments often lead to the use of coordinate-dependent estimators, yielding matrices that axe symmetric but not positive semidefinite. We briefly discuss existing methods, based on shrinking, for transforming such matrices into positive semidefinite matrices. A simple method based on eigenvalues is also considered. Taking into account the geometric structure of correlation matrices, a new method is proposed which uses techniques similar to those of multidimensional scaling.
引用
收藏
页码:965 / 984
页数:20
相关论文
共 7 条
[1]   MULTI-VARIATE PROBIT ANALYSIS [J].
ASHFORD, JR ;
SOWDEN, RR .
BIOMETRICS, 1970, 26 (03) :535-&
[2]  
DEVLIN SJ, 1975, BIOMETRIKA, V62, P531, DOI 10.2307/2335508
[3]  
GNANADESIKAN R, 1977, METHODS STATISTICAL
[4]   MULTIVARIATE PROBIT ANALYSIS - A NEGLECTED PROCEDURE IN MEDICAL STATISTICS [J].
LESAFFRE, E ;
MOLENBERGHS, G .
STATISTICS IN MEDICINE, 1991, 10 (09) :1391-1403
[5]  
LITTLE R, 1987, STATISTICAL ANAL MIS
[6]  
PEMBERTON JD, 1984, THESIS U NEWCASTLE T
[7]  
Seber G. A. F., 1984, MULTIVARIATE OBSERVA, DOI DOI 10.1002/9780470316641