Activation of an H2O2-generating NADH oxidase in human lung fibroblasts by transforming growth factor beta 1

被引:374
作者
Thannickal, VJ
Fanburg, BL
机构
[1] Pulmonary and Critical Care Division, Department of Medicine, Tufts University School of Medicine, Boston
[2] Pulmonary and Critical Care Division, New England Medical Center, Boston, MA 02111, 750 Washington St.
关键词
D O I
10.1074/jbc.270.51.30334
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The cellular source(s) and mechanisms of generation of reactive oxygen species (ROS) in nonphagocytic cells stimulated by cytokines are unclear, In this study, we demonstrate that transforming growth factor beta 1 (TGF-beta 1, 1 ng/ml) induces the release of H2O2 from human lung fibroblasts within 8 h following exposure to this cytokine, Elevation in H2O2 release peaked at 16 h (similar to 22 pmol/min/10(6) cells) and gradually declined to undetectable levels at 48 h after TGF-beta 1 treatment. NADH consumption by these cells was stimulated by TGF-beta 1 while that of NADPH remained unchanged. NADH oxidase activity as measured by diphenyliodonium (DPI)-inhibitable NADH consumption in TGF-beta 1-treated cells followed a time course similar to that of H2O2 release. DPI, an inhibitor of the NADPH oxidase complex of neutrophils and other flavoproteins, also inhibited the TGF-beta 1-induced H2O2 production, Inhibitors of other enzymatic systems involving flavoproteins that may be responsible for the production of H2O2 in these cells, including xanthine oxidase, nitric oxide synthase, and both mitochondrial and microsomal electron transport systems, failed to inhibit TGF-beta 1-induced NADH oxidation and H2O2 production. The delay (>4 h) following TGF-beta 1 exposure along with the inhibition of this process by cycloheximide and actinomycin D suggest the requirement of new protein synthesis for induction of NADH oxidase activity in TGF-beta 1-stimulated fibroblasts.
引用
收藏
页码:30334 / 30338
页数:5
相关论文
共 26 条
[1]   THE SUPEROXIDE-FORMING ENZYMATIC SYSTEM OF PHAGOCYTES [J].
BELLAVITE, P .
FREE RADICAL BIOLOGY AND MEDICINE, 1988, 4 (04) :225-261
[2]   TRANSFORMING GROWTH-FACTOR-BETA IN DISEASE - THE DARK SIDE OF TISSUE-REPAIR [J].
BORDER, WA ;
RUOSLAHTI, E .
JOURNAL OF CLINICAL INVESTIGATION, 1992, 90 (01) :1-7
[3]   SUPPRESSION OF EXPERIMENTAL GLOMERULONEPHRITIS BY ANTISERUM AGAINST TRANSFORMING GROWTH FACTOR-BETA-1 [J].
BORDER, WA ;
OKUDA, S ;
LANGUINO, LR ;
SPORN, MB ;
RUOSLAHTI, E .
NATURE, 1990, 346 (6282) :371-374
[4]   A GROWTH FACTOR-STIMULATED AND HORMONE-STIMULATED NADH OXIDASE FROM RAT-LIVER PLASMA-MEMBRANE [J].
BRIGHTMAN, AO ;
WANG, J ;
MIU, RKM ;
SUN, IL ;
BARR, R ;
CRANE, FL ;
MORRE, DJ .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1105 (01) :109-117
[5]   TRANSFORMING GROWTH FACTOR-BETA-1 IS PRESENT AT SITES OF EXTRACELLULAR-MATRIX GENE-EXPRESSION IN HUMAN PULMONARY FIBROSIS [J].
BROEKELMANN, TJ ;
LIMPER, AH ;
COLBY, TV ;
MCDONALD, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (15) :6642-6646
[6]   DIPHENYLENE IODONIUM AS AN INHIBITOR OF THE NADPH OXIDASE COMPLEX OF BOVINE NEUTROPHILS - FACTORS CONTROLLING THE INHIBITORY POTENCY OF DIPHENYLENE IODONIUM IN A CELL-FREE SYSTEM OF OXIDASE ACTIVATION [J].
DOUSSIERE, J ;
VIGNAIS, PV .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1992, 208 (01) :61-71
[7]   EFFECT OF ANTIBODY TO TRANSFORMING GROWTH-FACTOR-BETA ON BLEOMYCIN-INDUCED ACCUMULATION OF LUNG COLLAGEN IN MICE [J].
GIRI, SN ;
HYDE, DM ;
HOLLINGER, MA .
THORAX, 1993, 48 (10) :959-966
[8]   ANGIOTENSIN-II STIMULATES NADH AND NADPH OXIDASE ACTIVITY IN CULTURED VASCULAR SMOOTH-MUSCLE CELLS [J].
GRIENDLING, KK ;
MINIERI, CA ;
OLLERENSHAW, JD ;
ALEXANDER, RW .
CIRCULATION RESEARCH, 1994, 74 (06) :1141-1148
[9]  
KAYANOKI Y, 1994, J BIOL CHEM, V269, P15488
[10]  
MAJANDER A, 1994, J BIOL CHEM, V269, P21037