COMBINED PRIMAL-DUAL AND PENALTY METHODS FOR CONVEX PROGRAMMING

被引:52
作者
KORT, BW
BERTSEKAS, DP
机构
[1] UNIV ILLINOIS,COORDINATED SCI LAB,URBANA,IL 61801
[2] BELL TEL LAB INC,HOLMDEL,NJ 07733
[3] UNIV ILLINOIS,DEPT ELECT ENGN,URBANA,IL 61801
来源
SIAM JOURNAL ON CONTROL | 1976年 / 14卷 / 02期
关键词
D O I
10.1137/0314020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A class of combined primal-dual and penalty methods for constrained minimization is proposed and analyzed, which generalizes the method of multipliers. A convergence and rate of convergence analysis is provided for these methods for the case of a convex programming problem. Global convergence is proved in the presence of both exact and inexact unconstrained minimization, and it is shown that the rate of convergence may be linear or superlinear with arbitrary Q-order of convergence depending on the problem at hand and the form of the penalty function employed.
引用
收藏
页码:268 / 294
页数:27
相关论文
共 28 条
[1]  
BERTSEKAS D, 1973, PENALTY MULTIPLIER M
[2]   COMBINED PRIMAL-DUAL AND PENALTY METHODS FOR CONSTRAINED MINIMIZATION [J].
BERTSEKAS, DP .
SIAM JOURNAL ON CONTROL, 1975, 13 (03) :521-544
[3]  
BERTSEKAS DP, 1973, METHOD MULTIPLIERS C
[4]  
BERTSEKAS DP, TO BE PUBLISHED
[5]  
BERTSEKAS DP, 1973, NECESSARY SUFFICIENT
[6]  
BERTSEKAS DP, 1975, NONLINEAR PROGRAMMIN, V2, P165
[7]  
BERTSEKAS DP, 1975, IEEE T AUTOMATIC CON, V16, P385
[8]  
BERTSEKAS DP, 1973, IEEE73CHO806OSMC PUB, P260
[9]  
BERTSEKAS DP, 1973, COMBINED PRIMAL DUAL