OPTIMAL TRIANGULAR MESH GENERATION BY COORDINATE TRANSFORMATION

被引:66
作者
DAZEVEDO, EF [1 ]
机构
[1] UNIV WATERLOO,DEPT COMP SCI,WATERLOO N2L 3G1,ONTARIO,CANADA
来源
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING | 1991年 / 12卷 / 04期
关键词
OPTIMAL TRIANGULAR MESH; FUNCTION INTERPOLATION; COORDINATE TRANSFORMATION;
D O I
10.1137/0912040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents the motivation for and construction of coordinate transformations that generate optimally efficient meshes for linear interpolation. The coordinate transformations are derived from a result in differential geometry characterizing a "flat" space. The optimality results are demonstrated for some numerical examples. Adaptive meshes produced by PLTMG [R. E. Bank, PLTMG: A Software Package for Solving Elliptic Partial Differential Equations, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990] are included for comparison. The paper concludes that coordinate transformation is a promising strategy for investigation into more complex optimal meshing problems in finite element analysis.
引用
收藏
页码:755 / 786
页数:32
相关论文
共 20 条
[1]  
BANK RE, 1990, PLTM A SOFTWARE PACK
[2]   ON OPTIMAL INTERPOLATION TRIANGLE INCIDENCES [J].
DAZEVEDO, EF ;
SIMPSON, RB .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (06) :1063-1075
[3]  
DAZEVEDO EF, 1989, THESIS U WATERLOO WA
[4]  
de Boor C, 1973, SPLINE FUNCTIONS APP, P57
[5]   AN OPTIMAL TRIANGULATION FOR 2ND-ORDER ELLIPTIC PROBLEMS [J].
DELFOUR, M ;
PAYRE, G ;
ZOLESIO, JP .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1985, 50 (03) :231-261
[6]   A METHOD OF GRID OPTIMIZATION FOR FINITE-ELEMENT METHODS [J].
DIAZ, AR ;
KIKUCHI, N ;
TAYLOR, JE .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1983, 41 (01) :29-45
[7]  
Felippa C. A., 1976, Applied Mathematical Modelling, V1, P93, DOI 10.1016/0307-904X(76)90005-6
[8]  
Felippa C. A., 1977, Applied Mathematical Modelling, V1, P239, DOI 10.1016/0307-904X(77)90015-4
[9]  
LOHNER R, 1986, ACCURACY ESTIMATES A, V1, P281
[10]  
MCGIRR MB, 1984, COMPUTATIONAL TECHNI, P229