FULL VALIDATION PROCEDURES FOR FEATURE-SELECTION IN CLASSIFICATION AND REGRESSION PROBLEMS

被引:45
作者
LANTERI, S
机构
[1] Università di Genova, Istituto di Analisi e Tecnologie Farmaceutiche ed Alimentari, I-16147 Genova, Via Brigata Salerno
关键词
D O I
10.1016/0169-7439(92)85006-O
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Those validation procedures are discussed which are commonly applied in regression and classification methods. When a chemometric technique works through several steps (scaling plus classification, feature selection plus regression, parameter optimization plus classification, etc.), validation can give an overestimate of the performance of methods if it is applied only to the final step. The idea of full validation, applied to the whole technique, is explained with reference to examples of synthetic and real data sets.
引用
收藏
页码:159 / 169
页数:11
相关论文
共 8 条
[1]  
BREIMAN L, 1985, J AM STAT ASSOC, V80, P580, DOI 10.2307/2288473
[2]   ALTERNATIVE KAPPA-NEAREST NEIGHBOR RULES IN SUPERVISED PATTERN-RECOGNITION .1. KAPPA-NEAREST NEIGHBOR CLASSIFICATION BY USING ALTERNATIVE VOTING RULES [J].
COOMANS, D ;
MASSART, DL .
ANALYTICA CHIMICA ACTA, 1982, 136 (APR) :15-27
[3]  
Duda R., 1973, PATTERN CLASSIFICATI, P130
[4]  
FORINA M, 1991, QSAR RATIONAL APPROA, P181
[5]  
FRANK I E, 1989, Journal of Chemometrics, V3, P463, DOI 10.1002/cem.1180030304
[6]   CROSS-VALIDATORY CHOICE AND ASSESSMENT OF STATISTICAL PREDICTIONS [J].
STONE, M .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1974, 36 (02) :111-147
[8]  
WOLD S, 1981, SIMCA3B UM U RES GRO