AN ERROR BOUND FOR THE FINITE-ELEMENT APPROXIMATION OF THE CAHN-HILLIARD EQUATION WITH LOGARITHMIC FREE-ENERGY

被引:52
作者
BARRETT, JW [1 ]
BLOWEY, JF [1 ]
机构
[1] UNIV DURHAM, DEPT MATH SCI, DURHAM DH1 3LE, ENGLAND
关键词
Mathematics Subject Classification (1991):65M60;
D O I
10.1007/s002110050157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An error bound is proved for a fully practical piecewise linear finite element approximation, using a backward Euler time discretization, of the Cahn-Hilliard equation with a logarithmic free energy.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 11 条
[1]  
Blowey J.F., 1992, EUR J APPL MATH, V3, P147, DOI [10.1017/S0956792500000759, DOI 10.1017/S0956792500000759]
[2]  
BLOWEY JF, 1995, IN PRESS IMAJNA
[3]  
Blowey JF, 1991, EUR J APPL MATH, V2, P233, DOI [DOI 10.1017/S095679250000053X, 10.1017/s095679250000053x]
[4]   ON SPINODAL DECOMPOSITION [J].
CAHN, JW .
ACTA METALLURGICA, 1961, 9 (09) :795-801
[5]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[6]  
CIALVALDINI JF, 1975, SIAM J NUMER ANAL, V12, P464
[7]   NUMERICAL-ANALYSIS OF THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC FREE-ENERGY [J].
COPETTI, MIM ;
ELLIOTT, CM .
NUMERISCHE MATHEMATIK, 1992, 63 (01) :39-65
[8]   ERROR ANALYSIS OF THE ENTHALPY METHOD FOR THE STEFAN PROBLEM [J].
ELLIOTT, CM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (01) :61-71
[9]  
ELLIOTT CM, 1991, IMA887 U MINN PREPR
[10]  
Lions JL., 1969, QUELQUES METHODES RE