THE PRINCIPAL PIVOTING METHOD REVISITED

被引:28
作者
COTTLE, RW
机构
[1] Department of Operations Research, Stanford University, Stanford, 94305, CA
关键词
Linear complementarity problem; pivotal algebra; principal pivoting method; sufficient matrices;
D O I
10.1007/BF01582264
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The principal pivoting method (PPM) for the linear complementarity problem (LCP) is shown to be applicable to the class of LCPs involving the newly identified class of sufficient matrices. © 1990 The Mathematical Programming Society, Inc.
引用
收藏
页码:369 / 385
页数:17
相关论文
共 9 条
[1]   A CONSTRUCTIVE CHARACTERIZATION OF Q0-MATRICES WITH NONNEGATIVE PRINCIPAL MINORS [J].
AGANAGIC, M ;
COTTLE, RW .
MATHEMATICAL PROGRAMMING, 1987, 37 (02) :223-231
[2]  
Chang Y, 1979, 7914 STANF U DEP OP
[3]  
Cottle R. W., 1968, MATH DECISION SCI 1, P144
[4]  
Cottle R. W., 1964, THESIS U CALIFORNIA
[5]   SUFFICIENT MATRICES AND THE LINEAR COMPLEMENTARITY-PROBLEM [J].
COTTLE, RW ;
PANG, JS ;
VENKATESWARAN, V .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 114 :231-249
[6]  
Dantzig G. B., 1967, NONLINEAR PROGRAMMIN, P55
[7]  
INGLETON AW, 1966, P LOND MATH SOC, V16, P519
[8]   BIMATRIX EQUILIBRIUM POINTS AND MATHEMATICAL-PROGRAMMING [J].
LEMKE, CE .
MANAGEMENT SCIENCE, 1965, 11 (07) :681-689
[9]  
TUCKER AW, 1963, SIAM REV, V5, P305