MAINTAINING THE MINIMAL DISTANCE OF A POINT SET IN POLYLOGARITHMIC TIME

被引:11
作者
SMID, M
机构
[1] Max-Planck-Institut für Informatik, Saarbrücken
关键词
D O I
10.1007/BF02187852
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A dynamic data structure is given that maintains the minimal distance in a set of n points in k-dimensional space in O((log n)k log log n) amortized time per update. The size of the data structure is bounded by O(n(log n)k). Distances are measured in the Minkowski L(t)-metric, where 1 less-than-or-equal-to t less-than-or-equal-to infinity. This is the first dynamic data structure that maintains the minimal distance in polylogarithmic time for fully on-line updates.
引用
收藏
页码:415 / 431
页数:17
相关论文
共 15 条
[1]   A LINEAR-TIME ALGORITHM FOR COMPUTING THE VORONOI DIAGRAM OF A CONVEX POLYGON [J].
AGGARWAL, A ;
GUIBAS, LJ ;
SAXE, J ;
SHOR, PW .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (06) :591-604
[2]   ON THE AVERAGE NUMBER OF REBALANCING OPERATIONS IN WEIGHT-BALANCED TREES [J].
BLUM, N ;
MEHLHORN, K .
THEORETICAL COMPUTER SCIENCE, 1980, 11 (03) :303-320
[3]   Fractional Cascading: I. A Data Structuring Technique [J].
Chazelle, Bernard ;
Guibas, Leonidas J. .
ALGORITHMICA, 1986, 1 (1-4) :133-162
[4]  
DICKERSON MT, 1991, IN PRESS 7TH P ACM S
[5]  
DOBKIN D, 1989, 30TH IEEE S F COMP S, P488
[6]  
IVERMARS MH, 1983, LECTURE NOTES COMPUT, V156
[7]   DYNAMIC FRACTIONAL CASCADING [J].
MEHLHORN, K ;
NAHER, S .
ALGORITHMICA, 1990, 5 (02) :215-241
[8]  
Mehlhorn K., 1984, DATA STRUCTURES ALGO
[9]   DYNAMIZATION OF ORDER DECOMPOSABLE SET PROBLEMS [J].
OVERMARS, MH .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1981, 2 (03) :245-260
[10]  
Preparata F. P., 2012, COMPUTATIONAL GEOMET