LOGARITHMIC CORRECTION TERMS OF THE MAGNETIC-SUSCEPTIBILITY IN HIGHLY CORRELATED ELECTRON-SYSTEMS

被引:5
作者
KAWANO, K
TAKAHASHI, M
机构
[1] Institute for Solid State Physics, University of Tokyo, Tokyo 106, Roppongi, Minato-ku
关键词
CORRELATED ELECTRON SYSTEMS; LOGARITHMIC CORRECTION; BETHE ANSATZ;
D O I
10.1143/JPSJ.64.4331
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The logarithmic correction terms in the repulsive Hubbard chain is investigated by using the Bethe Ansatz. The magnetic susceptibility chi of this model has a field dependent logarithmic correction term in small magnetic field at zero-temperature. This term causes partial derivative chi/partial derivative h\(h=0)=infinity. In arbitrary n and U the existence of the logarithmic correction term is shown for the susceptibility. We consider how this term depends on n and U. We also discuss the logarithmic correction term of the super-symmetric t-J model.
引用
收藏
页码:4331 / 4344
页数:14
相关论文
共 32 条
[1]   CRITICAL-BEHAVIOR OF SPIN-S HEISENBERG ANTIFERROMAGNETIC CHAINS - ANALYTIC AND NUMERICAL RESULTS [J].
AFFLECK, I ;
GEPNER, D ;
SCHULZ, HJ ;
ZIMAN, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (05) :511-529
[2]   SOLUTION OF THE KONDO PROBLEM [J].
ANDREI, N ;
FURUYA, K ;
LOWENSTEIN, JH .
REVIEWS OF MODERN PHYSICS, 1983, 55 (02) :331-402
[3]   CHARGE-SPIN RECOMBINATION IN THE ONE-DIMENSIONAL SUPERSYMMETRIC T-J MODEL [J].
BARES, PA ;
CARMELO, JMP ;
FERRER, J ;
HORSCH, P .
PHYSICAL REVIEW B, 1992, 46 (22) :14624-14654
[4]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[5]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[6]   LINEAR MAGNETIC CHAINS WITH ANISOTROPIC COUPLING [J].
BONNER, JC ;
FISHER, ME .
PHYSICAL REVIEW, 1964, 135 (3A) :A640-+
[7]   SUSCEPTIBILITY OF THE SPIN 1/2 HEISENBERG ANTIFERROMAGNETIC CHAIN [J].
EGGERT, S ;
AFFLECK, I ;
TAKAHASHI, M .
PHYSICAL REVIEW LETTERS, 1994, 73 (02) :332-335
[8]   CRITICAL EXPONENTS FOR THE ONE-DIMENSIONAL HUBBARD-MODEL [J].
FRAHM, H ;
KOREPIN, VE .
PHYSICAL REVIEW B, 1990, 42 (16) :10553-10565
[9]   CORRELATION-FUNCTIONS OF THE ONE-DIMENSIONAL HUBBARD-MODEL IN A MAGNETIC-FIELD [J].
FRAHM, H ;
KOREPIN, VE .
PHYSICAL REVIEW B, 1991, 43 (07) :5653-5662
[10]   CORRELATION-FUNCTIONS OF ONE-DIMENSIONAL QUANTUM-SYSTEMS [J].
GIAMARCHI, T ;
SCHULZ, HJ .
PHYSICAL REVIEW B, 1989, 39 (07) :4620-4629