HARDWARE IMPLEMENTATION OF AN ARTIFICIAL NEURAL-NETWORK USING FIELD-PROGRAMMABLE GATE ARRAYS (FPGAS)

被引:48
作者
BOTROS, NM
ABDULAZIZ, M
机构
[1] Department of Electrical Engineering, Southern Illinois University, Carbondale
关键词
Artificial intelligence - Backpropagation - Cellular arrays - Digital signal processing - Logic gates - Microprocessor chips - Personal computers - Speech recognition;
D O I
10.1109/41.334585
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present a hardware implementation of a fully digital multi-layer perceptron artificial neural network using Xilinx Field Programmable Gate Arrays (FPGAs). Each node is implemented with two XC3042 FPGAs and a 1K x 8 EPROM. Training is done off-line on a PC. We have tested successfully the performance of the network.
引用
收藏
页码:665 / 667
页数:3
相关论文
共 5 条
[1]  
Cox C.E., Ekkehard BLanz W., Ganglon—A fast hardware implementation of a connectionist classifier, IEEE-CICC, (1991)
[2]  
Botros N., Abdul-Aziz M., Hardware implementation of an artificial neural network, Proc. IEEE Int. Conf. on Neural Networks, 2, pp. 1252-1257, (1993)
[3]  
Feher B., Resonator based digital filters using field programmable gate array elements, Fifth Ann. IEEE Int. ASIC Conf., (1992)
[4]  
Satyanarayana S., Tsividis Y., Graf P., A reconfigurable VLSI neural network, IEEE J. Solid-State Circuits, 25, pp. 849-55, (1990)
[5]  
Lippmann R., An introduction to computing with neural nets, IEEE-ASSP, pp. 4-22, (1987)