PRONYS METHOD FOR COMPLETELY MONOTONIC FUNCTIONS

被引:18
作者
KAMMLER, DW [1 ]
机构
[1] SO ILLINOIS UNIV,CARBONDALE,IL 62901
关键词
D O I
10.1016/0022-247X(77)90246-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:560 / 570
页数:11
相关论文
共 10 条
[1]   RATIONAL INTERPOLATION, NORMALITY AND MONOSPLINES [J].
BRAESS, D .
NUMERISCHE MATHEMATIK, 1974, 22 (03) :219-232
[2]  
Hamming RW, 1962, NUMERICAL METHODS SC
[3]  
Hildebrand F. B., 1974, INTRO NUMERICAL ANAL
[4]   APPROXIMATION WITH SUMS OF EXPONENTIALS IN LP[0,INFINITY) [J].
KAMMLER, DW .
JOURNAL OF APPROXIMATION THEORY, 1976, 16 (04) :384-408
[5]   TSCHEBYSCHEFF APPROXIMATION OF COMPLETELY MONOTONIC FUNCTIONS BY SUMS OF EXPONENTIALS [J].
KAMMLER, DW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (05) :761-774
[6]  
Karlin S., 1968, TOTAL POSITIVITY
[7]  
Lanczos C., 1956, APPLIED ANALYSIS
[8]  
MEINARDUS C, 1967, SPRINGER TRACTS NATU, V13
[9]  
Natanson I.P., 1964, CONSTRUCTIVE FUNCTIO, VI
[10]  
[No title captured]