SYMMETRIZATION OF THE CONTAINED COMPRESSIBLE-FLUID VIBRATION EIGENPROBLEM

被引:29
作者
FELIPPA, CA [1 ]
机构
[1] LOCKHEED PALO ALTO RES LABS, APPL MECH LAB, PALO ALTO, CA 94304 USA
来源
COMMUNICATIONS IN APPLIED NUMERICAL METHODS | 1985年 / 1卷 / 05期
关键词
CONTAINERS - Elasticity - MATHEMATICAL TECHNIQUES - Finite Element Method - VIBRATIONS;
D O I
10.1002/cnm.1630010509
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper studies the symmetrization of the problem of coupled vibrations of an acoustic fluid enclosed in an elastic container. The container structure is discretized by a displacement finite element formulation and the acoustic fluid by a displacement-potential formulation. The vibrations of this physically conservative coupled system are governed by an unsymmetric algebraic eigenvalue problem. Eight equivalent symmetric forms of this problem are exhibited. The fluid-pressure formulation leads to a similar unsymmetric eigenproblem, which in turn can be converted to another eight equivalent symmetric forms.
引用
收藏
页码:241 / 247
页数:7
相关论文
共 13 条
[2]   A SYMMETRIC POTENTIAL FORMULATION FOR FLUID-STRUCTURE INTERACTION [J].
EVERSTINE, GC .
JOURNAL OF SOUND AND VIBRATION, 1981, 79 (01) :157-160
[3]   FINITE-ELEMENT ANALYSIS OF SHOCK-INDUCED HULL CAVITATION [J].
FELIPPA, CA ;
DERUNTZ, JA .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 44 (03) :297-337
[4]  
GEERS TL, 1984, NUMERICAL METHODS TR, P150
[5]  
Geradin M., 1984, ENG COMP, V1, P151
[6]   SUBSTRUCTURE VARIATIONAL ANALYSIS OF THE VIBRATIONS OF COUPLED FLUID STRUCTURE SYSTEMS - FINITE-ELEMENT RESULTS [J].
MORAND, H ;
OHAYON, R .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1979, 14 (05) :741-755
[7]  
NEWTON RE, 1980, SPR ASCE CONV PORTL
[8]  
NEWTON RE, 1978, NPS6978013 NAV POSTG
[9]  
PARLETT B. N., 1980, SYMMETRIC EIGENVALUE, DOI DOI 10.1137/1.9781611971163
[10]  
PAUL DK, 1982, THESIS U COLLEGE SWA