EFFICIENT HIGH-ACCURACY SOLUTIONS WITH GMRES(M)

被引:28
作者
TURNER, K
WALKER, HF
机构
来源
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING | 1992年 / 13卷 / 03期
关键词
GMRES(M); RESTARTED ITERATIVE LINEAR METHODS; HIGH ACCURACY SOLUTIONS; ITERATIVE REFINEMENT; LARGE-SCALE LINEAR AND NONLINEAR SYSTEMS; ELLIPTIC BOUNDARY VALUE PROBLEMS;
D O I
10.1137/0913048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consideration of an abstract improvement algorithm leads to the following principle, which is similar to that underlying iterative refinement: By making judicious use of relatively few high accuracy computations, high accuracy solutions can be obtained very efficiently by the algorithm. This principle is applied specifically to GMRES(m) here; it can be similarly applied to a number of other "restarted" iterative linear methods as well. Results are given for numerical experiments in solving a discretized linear elliptic boundary value problem and in computing a step of an inexact Newton method using finite differences for a discretized nonlinear elliptic boundary value problem.
引用
收藏
页码:815 / 825
页数:11
相关论文
共 13 条
[2]   HYBRID KRYLOV METHODS FOR NONLINEAR-SYSTEMS OF EQUATIONS [J].
BROWN, PN ;
SAAD, Y .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (03) :450-481
[3]   INEXACT NEWTON METHODS [J].
DEMBO, RS ;
EISENSTAT, SC ;
STEIHAUG, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :400-408
[4]   VARIATIONAL ITERATIVE METHODS FOR NONSYMMETRIC SYSTEMS OF LINEAR-EQUATIONS [J].
EISENSTAT, SC ;
ELMAN, HC ;
SCHULTZ, MH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (02) :345-357
[5]  
Elman H. C., 1982, THESIS YALE U NEW HA
[6]   CONTINUATION-CONJUGATE GRADIENT METHODS FOR THE LEAST-SQUARES SOLUTION OF NONLINEAR BOUNDARY-VALUE PROBLEMS [J].
GLOWINSKI, R ;
KELLER, HB ;
REINHART, L .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (04) :793-832
[7]  
Golub G.H., 1996, MATH GAZ, VThird
[8]  
More JJ, 1990, LECTURES APPLIED MAT, V26, P723
[9]  
SAAD Y, 1986, SIAM J SCI STAT COMP, V7, P856, DOI 10.1137/0907058
[10]  
SAAD Y, 1981, MATH COMPUT, V37, P105, DOI 10.1090/S0025-5718-1981-0616364-6