QR DECOMPOSITION FOR STATE-SPACE REPRESENTATION OF CONSTRAINED MECHANICAL DYNAMIC-SYSTEMS

被引:91
作者
KIM, SS [1 ]
VANDERPLOEG, MJ [1 ]
机构
[1] UNIV IOWA, COLL ENGN, DEPT MECH ENGN, IOWA CITY, IA 52242 USA
来源
JOURNAL OF MECHANISMS TRANSMISSIONS AND AUTOMATION IN DESIGN-TRANSACTIONS OF THE ASME | 1986年 / 108卷 / 02期
关键词
D O I
10.1115/1.3260800
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
MECHANISMS
引用
收藏
页码:183 / 188
页数:6
相关论文
共 26 条
[1]  
[Anonymous], 1975, COMPUTER SOLUTION OR
[2]  
Baumgarte J., 1972, COMPUTER METHODS APP, V1, DOI DOI 10.1016/0045-7825(72)90018-7
[3]  
Businger P., 1965, NUMER MATH, V7, P269, DOI [DOI 10.1007/BF01436084, 10.1007/BF01436084]
[4]  
Campbell S. L., 1982, SINGULAR SYSTEM DIFF
[5]  
CHACE MA, 1971, SAE710244 PAP
[6]  
CHANG CO, 1984, THESIS U IOWA
[7]  
DONGARRA JJ, 1976, LINPACK USERS GUIDE
[8]   ODE METHODS FOR THE SOLUTION OF DIFFERENTIAL ALGEBRAIC SYSTEMS [J].
GEAR, CW ;
PETZOLD, LR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (04) :716-728
[9]   SINGULAR VALUE DECOMPOSITION AND LEAST SQUARES SOLUTIONS [J].
GOLUB, GH ;
REINSCH, C .
NUMERISCHE MATHEMATIK, 1970, 14 (05) :403-&
[10]  
GOLUB GH, 1965, NUMER MATH, V7, P206, DOI DOI 10.1007/BF01436075