A PROBABILISTIC APPROACH TO THE SITE-PERCOLATION PROBLEM .1. BETHE LATTICES

被引:6
作者
GUEMEZ, J [1 ]
VELASCO, S [1 ]
机构
[1] UNIV CANTABRIA,FAC CIENCIAS,DEPT FIS APLICADA,E-39005 SANTANDER,SPAIN
来源
PHYSICA A | 1991年 / 171卷 / 03期
关键词
D O I
10.1016/0378-4371(91)90298-Q
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A simple method, based on the use of conditional probabilities, for deriving the particle cluster distribution is presented for the site-percolation problem. The method is applied to a Bethe lattice (or Cayley tree). Two approximations to the behaviour of the obtained probability distribution in the thermodynamic limit are considered. The first one corresponds to the case of finite clusters, and leads to a binomial-like distribution. The second one allows us to treat the case of the existence of clusters spanning the lattice, and thus to investigate the onset of the percolating cluster. The extrema (maxima) of the corresponding distributions are analytically and numerically analyzed. Well-known results for the Bethe lattice, such as the critical probability, p(c), and the percolation probability, P(proportional to)(p), are obtained.
引用
收藏
页码:486 / 503
页数:18
相关论文
共 15 条
[1]  
DEUTSCHE RG, 1987, CHANCE MATTER HOUCHE, V46
[2]  
Essam J. W., 1972, PHASE TRANSITIONS CR
[3]  
Feller W., 1968, INTRO PROBABILITY TH, VII
[4]   SOME CLUSTER SIZE AND PERCOLATION PROBLEMS [J].
FISHER, ME ;
ESSAM, JW .
JOURNAL OF MATHEMATICAL PHYSICS, 1961, 2 (04) :609-&
[5]   PROBABILITY-DISTRIBUTION FOR A LATTICE GAS-MODEL .1. GENERAL STUDY [J].
GUEMEZ, J ;
VELASCO, S ;
HERNANDEZ, AC .
PHYSICA A, 1988, 152 (1-2) :226-242
[6]   PROBABILITY-DISTRIBUTION FOR A LATTICE GAS-MODEL .2. THERMODYNAMIC LIMIT [J].
GUEMEZ, J ;
VELASCO, S ;
HERNANDEZ, AC .
PHYSICA A, 1988, 152 (1-2) :243-253
[7]   A PROBABILISTIC APPROACH TO THE SITE-PERCOLATION PROBLEM .2. STANDARD LATTICES [J].
GUEMEZ, J ;
VELASCO, S .
PHYSICA A, 1991, 171 (03) :504-516
[8]  
LEAHT PL, 1976, PHYS REV A, V14, P5046
[9]   MONTE-CARLO STUDY OF THE PERCOLATING CLUSTER FOR THE SQUARE LATTICE SITE PROBLEM [J].
MIDDLEMISS, KM ;
WHITTINGTON, SG ;
GAUNT, DS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (05) :1835-1840
[10]  
REICH GR, 1977, J PHYS C SOLID STATE, V11, P1155