SQUEEZED STATES WITH THERMAL NOISE .1. PHOTON-NUMBER STATISTICS

被引:160
作者
MARIAN, P [1 ]
MARIAN, TA [1 ]
机构
[1] UNIV BUCHAREST, DEPT PHYS, R-76900 BUCHAREST, ROMANIA
来源
PHYSICAL REVIEW A | 1993年 / 47卷 / 05期
关键词
D O I
10.1103/PhysRevA.47.4474
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate a free monochromatic electromagnetic field which is the superposition of a squeezed thermal radiation and a coherent one. The main tool in our analysis is the characteristic function that has a Gaussian form. We establish an analytic formula for an arbitrary correlation function, as well as its strong-squeezing limit. Besides the usual quasiprobability densities, the coherent-state, number-state, coordinate, and momentum representations of the density operator are derived. We point out the nonclassical oscillations of the photon-number distribution and find its generating function. Collaterally, displaced thermal states and squeezed thermal states are revisited as nontrivial particular cases. We examine finally the squeezing properties of the field using the distribution functions of the quadratures.
引用
收藏
页码:4474 / 4486
页数:13
相关论文
共 35 条
[1]   PHOTON DISTRIBUTIONS FOR NONCLASSICAL FIELDS WITH COHERENT COMPONENTS [J].
AGARWAL, GS ;
ADAM, G .
PHYSICAL REVIEW A, 1989, 39 (12) :6259-6266
[2]   PHOTON-NUMBER DISTRIBUTIONS FOR QUANTUM-FIELDS GENERATED IN NONLINEAR OPTICAL PROCESSES [J].
AGARWAL, GS ;
ADAM, G .
PHYSICAL REVIEW A, 1988, 38 (02) :750-753
[3]  
BUCHHOLZ H, 1969, CONFLUENT HYPERGEOME, P150
[4]   ORDERED EXPANSIONS IN BOSON AMPLITUDE OPERATORS [J].
CAHILL, KE ;
GLAUBER, RJ .
PHYSICAL REVIEW, 1969, 177 (5P1) :1857-+
[5]   PHOTON-NUMBER DISTRIBUTIONS FOR FIELDS WITH GAUSSIAN WIGNER FUNCTIONS [J].
CHATURVEDI, S ;
SRINIVASAN, V .
PHYSICAL REVIEW A, 1989, 40 (10) :6095-6098
[6]  
ERDELYI, 1953, HIGH TRANSCENDENTAL, V2, P192
[7]  
ERDELYI, 1953, HIGH TRANSCENDENTAL, V2, P194
[8]  
ERDELYI, 1953, HIGH TRANSCENDENTAL, V2, P195
[9]  
ERDELYI A, 1953, HIGH TRANSCENDENTAL, V2, P189
[10]  
ERDELYI A, 1953, HIGH TRANSCENDENTAL, V2, P188