A SINC QUADRATURE RULE FOR HADAMARD FINITE-PART INTEGRALS

被引:22
作者
BIALECKI, B
机构
[1] Department of Mathematics, University of Kentucky, Lexington, 40506, KY
关键词
Subject Classifications: AMS(MOS):65D32; CR:; G; 1.4;
D O I
10.1007/BF01386410
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Sinc quadrature rule is presented for the evaluation of Hadamard finite-part integrals of analytic functions. Integration over a general are in the complex plane is considered. Special treatment is given to integrals over the interval (-1,1). Theoretical error estimates are derived and numerical examples are included. © 1990 Springer-Verlag.
引用
收藏
页码:263 / 269
页数:7
相关论文
共 8 条
[1]   A MODIFIED SINC QUADRATURE RULE FOR FUNCTIONS WITH POLES NEAR THE ARC OF INTEGRATION [J].
BIALECKI, B .
BIT, 1989, 29 (03) :464-476
[2]  
BIALECKI B, IN PRESS MATH COMPUT
[3]   ON THE CONVERGENCE OF PRODUCT-FORMULAS FOR THE NUMERICAL EVALUATION OF DERIVATIVES OF CAUCHY PRINCIPAL VALUE INTEGRALS [J].
CRISCUOLO, G ;
MASTROIANNI, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (03) :713-727
[4]  
ELLIOTT D, 1979, MATH COMPUT, V33, P301, DOI 10.1090/S0025-5718-1979-0514825-2
[5]  
IOAKIMIDIS NI, 1985, MATH COMPUT, V44, P191, DOI 10.1090/S0025-5718-1985-0771040-8
[6]  
MONEGATO G, 1987, NUMER MATH, V50, P273, DOI 10.1007/BF01390705
[7]   THE NUMERICAL EVALUATION OF HADAMARD FINITE-PART INTEGRALS [J].
PAGET, DF .
NUMERISCHE MATHEMATIK, 1981, 36 (04) :447-453
[8]   APPROXIMATIONS VIA WHITTAKERS CARDINAL FUNCTION [J].
STENGER, F .
JOURNAL OF APPROXIMATION THEORY, 1976, 17 (03) :222-240