AN APPROACH OF DETERMINISTIC CONTROL-PROBLEMS WITH UNBOUNDED DATA

被引:28
作者
BARLES, G
机构
[1] CEREMADE, Université de Paris-Dauphine, Place du Maréchal-De-Lattre-de-Tassigny, Cedex 16, Paris
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1990年 / 7卷 / 04期
关键词
Bellman Equations; comparison results; contraintes sur le gradient; Contrôle déterministe non borné; Deterministic unbounded control problems; gradient-constraints; Hamilton-Jacobi Equations; résultats de comparaison; équations de Bellman; équations de Hamilton-Jacobi;
D O I
10.1016/S0294-1449(16)30290-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the value function of a deterministic unbounded control problem is a viscosity solution and the maximum viscosity subsolution of a family of Bellman Equations; in particular, the one given by the hamiltonian, generally discontinuous, associated formally to the problem by analogy with the bounded case. In some cases, we show that this equation is equivalent to a first-order Hamilton-Jacobi Equation with gradient constraints for which we give several existence and uniqueness results. Finally, we indicate other applications of these results to first-order H. J. Equations, to some cheap control problems and to uniqueness results in the nonconvex Calculus of Variations. © 2016 L'Association Publications de l'Institut Henri Poincaré
引用
收藏
页码:235 / 258
页数:24
相关论文
共 31 条
[1]  
BARLES G, 1985, NONLIN ANAL TMA, V9
[2]  
BARLES G, P COLL FRANCO ESP
[3]  
BARLES G, 1984, ANN IHP ANAL NONLIN, V1
[4]  
BARLES G, 1987, MATH MOD NOM ANAL, V21
[5]  
BARLES G, UNPUB EXIT TIME PROB
[6]  
BARLES G, 1985, ANN IHP ANAL NONLIN, V2
[7]  
BARRON EN, 1985, SIAM J CONTROL OPTIM, V23
[8]  
CAPUZZODOLCETTA I, IN PRESS HAMILTONJAC
[9]  
CRANDALL MG, NONLINEAR ANAL TMA
[10]  
CRANDALL MG, 1984, T AMS, V282