A FREDHOLM INTEGRAL-EQUATION OF THE 2ND KIND FOR CONFORMAL MAPPING

被引:12
作者
BERRUT, JP [1 ]
机构
[1] SWISS FED INST TECHNOL,SEMINAR ANGEW MATH,CH-8092 ZURICH,SWITZERLAND
关键词
MATHEMATICAL TRANSFORMATIONS - Fast Fourier Transforms;
D O I
10.1016/0377-0427(86)90132-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a Fredholm integral equation of the second kind for the derivative of the boundary correspondence function theta of the conformal mapping of a Jordan region with piecewise twice differentiable boundary onto the unit disk. One of our derivations of the equation leads to a more general regularization procedure for some singular integral equations of the first kind. The integral equation can be solved numerically by applying the Fourier method; the convergence to theta prime in L//2 of the solution of the discrete equation so obtained follows by simple theorems. Examples show that the equation often yields better numerical results than both a related method proposed by Henrici and Warschawski's equation.
引用
收藏
页码:99 / 110
页数:12
相关论文
共 34 条
[1]  
[Anonymous], 1978, ERGEBNISSE MATH IHRE
[2]  
[Anonymous], 1976, A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind
[3]   ON THE ASYMPTOTIC CONVERGENCE OF COLLOCATION METHODS [J].
ARNOLD, DN ;
WENDLAND, WL .
MATHEMATICS OF COMPUTATION, 1983, 41 (164) :349-381
[4]  
ARNOLD DN, 1983, MATH COMPUT, V41, P383, DOI 10.1090/S0025-5718-1983-0717692-8
[5]  
BERRUT JP, UNPUB EQUIVALENCE ME
[6]  
BERRUT JP, 1976, THESIS ETH ZURICH
[7]  
BERRUT JP, 1985, THESIS ETH ZURICH
[8]   CM CONVERGENCE OF TRIFONOMETRIC INTERPOLANTS [J].
BUBE, KP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (06) :1258-1268
[9]  
DELVES LM, 1977, J I MATH APPL, V20, P163
[10]   INTEGRAL-EQUATIONS OF FIRST KIND AND CONFORMAL MAPPING [J].
GAIER, D .
MATHEMATISCHE ZEITSCHRIFT, 1976, 147 (02) :113-129