LEARNING CONVERGENCE IN THE CEREBELLAR MODEL ARTICULATION CONTROLLER

被引:111
作者
WONG, YF
SIDERIS, A
机构
[1] Department of Electrical Engineering, California Institute of Technology, Pasadena
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1992年 / 3卷 / 01期
关键词
19;
D O I
10.1109/72.105424
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new way to look at the learning algorithm in the cerebellar model articulation controller (CMAC), proposed by Albus [1]. We obtain a proof that the CMAC learning always converges with arbitrary accuracy on any set of training data. We also propose an alternative way to implement CMAC based on the insights obtained in the process. We test the new implementation scheme with a computer simulation for learning the inverse dynamics of a two-link robot arm.
引用
收藏
页码:115 / 121
页数:7
相关论文
共 19 条
[1]  
Albus J. S., 1975, Transactions of the ASME. Series G, Journal of Dynamic Systems, Measurement and Control, V97, P220, DOI 10.1115/1.3426922
[2]  
Albus J. S., 1972, THESIS U MARYLAND
[3]  
Broomhead D. S., 1988, Complex Systems, V2, P321
[4]  
CARTER MJ, 1990, ADV NEURAL INFORMATI, V2, P340
[5]  
CATLIN DE, 1989, ESTIMATION CONTROL D, P93
[6]  
CRAIG JJ, 1989, INTRO ROBOTICS MECHA, P201
[7]  
DUDA R, 1973, PATTERN CLASSIFICATI, P155
[8]  
FELLER W, 1968, INTRO PROBABILITY TH, V1, P28
[9]  
GOLUB GH, 1983, MATRIX COMPUTATIONS, P353
[10]  
HORMEL M, 1990, ADV NEURAL INFORMATI, V2, P332