COMPUTATIONAL-COMPLEXITY OF NORM-MAXIMIZATION

被引:42
作者
BODLAENDER, HL
GRITZMANN, P
KLEE, V
VANLEEUWEN, J
机构
[1] STATE UNIV UTRECHT, DEPT COMP SCI, UTRECHT, NETHERLANDS
[2] UNIV WASHINGTON, DEPT MATH, SEATTLE, WA 98195 USA
[3] UNIV AUGSBURG, INST MATH, W-8900 AUGSBURG, GERMANY
关键词
D O I
10.1007/BF02123011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper discusses the problem of maximizing a quasiconvex function phi over a convex polytope P in n-space that is presented as the intersection of a finite number of halfspaces. The problem is known to be NP-hard (for variable n) when phi is the p(th) power of the classical p-norm. The present reexamination of the problem establishes NP-hardness for a wider class of functions, and for the p-norm it proves the NP-hardness of maximization over n-dimensional parallelotopes that are centered at the origin or have a vertex there. This in turn implies the NP-hardness of {-1, 1}-maximization and {0,1}-maximization of a positive definite quadratic form. On the "good" side, there is an efficient algorithm for maximizing the Euclidean norm over an arbitrary rectangular parallelotope.
引用
收藏
页码:203 / 225
页数:23
相关论文
共 42 条
[1]  
[Anonymous], 1980, USSR COMP MATH MATH+, DOI [DOI 10.1016/0041-5553(80)90061-0, 10.1016/0041-5553(80)90061-0]
[2]  
[Anonymous], 1971, STOC 71, DOI DOI 10.1145/800157.805047
[3]   A SOLVABLE CASE OF QUADRATIC 0-1 PROGRAMMING [J].
BARAHONA, F .
DISCRETE APPLIED MATHEMATICS, 1986, 13 (01) :23-26
[4]  
BIELECKI A, 1954, ANN U M CURIE SKLO A, V8, P101
[5]  
Bielecki A., 1954, ANN U M CURIE SK IOD ANN U M CURIE SK IOD, VA8, P97
[6]  
Christensen Carl Marius, 1950, MAT TIDSSKR B, V1950, P22
[7]  
CRAMA Y, 1988, BASIC ALGORITHM PSEU
[8]   THE COMPLEXITY OF VERTEX ENUMERATION METHODS [J].
DYER, ME .
MATHEMATICS OF OPERATIONS RESEARCH, 1983, 8 (03) :381-402
[9]   ON THE COMPLEXITY OF 4 POLYHEDRAL SET CONTAINMENT PROBLEMS [J].
FREUND, RM ;
ORLIN, JB .
MATHEMATICAL PROGRAMMING, 1985, 33 (02) :139-145
[10]  
Garey M.R., 1979, COMPUTERS INTRACTABI, V174