We have examined both how the molecular phenotype of Schwann cells in vitro is regulated by transforming growth factor beta (TGF-beta), using immunohistochemistry and immunoblotting, and the distribution of TGF-beta 2 and 3 in embryonic and mature nerves and ganglia, using immunohistochemistry and in situ hybridisation. We find that TGF-beta 2 and -3 upregulate expression of the neural cell adhesion molecules NCAM and L1. In TGF-beta-treated cultures, in addition to the 140 and 120 kD isoforms known to be present in Schwann cells, small amounts of the 180 kD isoform can be detected. TGF-beta s also block cAMP-induced expression of the lipid antigens galactocerebroside (GalC) and O4, in addition to blocking expression of protein zero (P-0), the major peripheral myelin glycoprotein, as previously shown. Using antibodies specific to TGF-beta 2 and -3, respectively, we confirm the presence of these proteins in myelin-forming Schwann cells and show also that TGF-beta 2 and -3 are clearly expressed by peripheral glia that are not involved in myelination. This includes Schwann cell precursors, embryonic Schwann cells, non-myelin-forming Schwann cells and satellite cells from adult nerves and ganglia, and neonatal Schwann cells in purified cultures without neurones. In situ hybridisation with a digoxygenin-labelled riboprobe reveals a strong TGF-beta 3 mRNA signal in Schwann cells, satellite cells, and some neurones. Schwann cells in culture also secrete TGF-beta in a latent form, whereas purified cultures of dorsal root ganglion neurones from 1-day-old rats secrete active TGF beta during the first 48 h in culture. (C) 1995 Wiley-Liss, Inc..