CRYPTIC ZOOPLANKTON SWIMMERS IN UPPER OCEAN SEDIMENT TRAPS

被引:131
作者
MICHAELS, AF
SILVER, MW
GOWING, MM
KNAUER, GA
机构
[1] UNIV SO MISSISSIPPI,CTR MARINE SCI,STENNIS SPACE CTR,MS 39529
[2] UNIV CALIF SANTA CRUZ,INST MARINE SCI,SANTA CRUZ,CA 95064
来源
DEEP-SEA RESEARCH PART A-OCEANOGRAPHIC RESEARCH PAPERS | 1990年 / 37卷 / 08期
关键词
D O I
10.1016/0198-0149(90)90043-U
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
Sediment traps are the major oceanographic tool for collecting passively sinking particulate material (the "particle flux") in the ocean. Sediment traps in the upper ocean also collect actively sinking zooplankton that are usually manually removed prior to analysis. Microscospic analysis of sediment trap samples collected over a 19-month period in the eastern North Pacific reveals that zooplankton "swimmers" are a larger problem than previously recognized. Zooplankton that are cryptic (i.e. difficult to see or distinguish from the detrital material) and difficult to remove (principally gelatinous zooplankton) may have contributed up to 20 mg C m-2 day-1 to the "particulate flux", with the highest values in the upper 150 m. This swimmer problem is in addition to the previously recognized presence of crustaceans and other large metazoans in traps. Additionally, the detritus-laden, mucous-feeding structures (houses)of larvaceans probably enter the traps with the larvaceans and would be impossible to remove. We estimate that the contribution of the cryptic swimmers and larvacean houses could be as much as 96% of the measured carbon flux. The contribution is greatest in the euphotic zone and drops sharply below 200 m. Subtracting out this potential artifact at the VERTEX station results in vertical profiles of organic carbon flux that differ dramatically from the standard flux profile for carbon in the upper ocean: specifically, the implied "regeneration" rate is greatly reduced. Screened traps (300 μm screens below the baffles) contained numerous metazoans smaller than the screen mesh size. These traps also contained lower levels of other types of sinking particles, and it is unclear to what extent the screens reduced the relative contribution of swimmers to the trap-collected carbon. Although the expanded swimmer problem presented here is now documented at just the VERTEX site, we expect it exists elsewhere. The extent of this swimmer problem requires resolution before sediment traps, especially those deployed in the upper few 100 m, can be used to measure the "flux of particulate material.". © 1990.
引用
收藏
页码:1285 / 1296
页数:12
相关论文
共 27 条
[1]   DISCARDED APPENDICULARIAN HOUSES AS SOURCES OF FOOD, SURFACE HABITATS AND PARTICULATE ORGANIC-MATTER IN PLANKTONIC ENVIRONMENTS [J].
ALLDREDGE, AL .
LIMNOLOGY AND OCEANOGRAPHY, 1976, 21 (01) :14-23
[2]   CHARACTERISTICS, DYNAMICS AND SIGNIFICANCE OF MARINE SNOW [J].
ALLDREDGE, AL ;
SILVER, MW .
PROGRESS IN OCEANOGRAPHY, 1988, 20 (01) :41-82
[3]  
[Anonymous], OCEANOGRAPHY
[4]   PRIMARY PRODUCTIVITY AND PARTICLE FLUXES ON A TRANSECT OF THE EQUATOR AT 153-DEGREES-W IN THE PACIFIC-OCEAN [J].
BETZER, PR ;
SHOWERS, WJ ;
LAWS, EA ;
WINN, CD ;
DITULLIO, GR ;
KROOPNICK, PM .
DEEP-SEA RESEARCH PART A-OCEANOGRAPHIC RESEARCH PAPERS, 1984, 31 (01) :1-11
[5]  
Bruland K.W., 1983, CHEM OCEANOGR, P157, DOI DOI 10.1016/B978-0-12-588608-6.50009-2
[6]   OCEANIC STRATIFIED EUPHOTIC ZONE AS ELUCIDATED BY TH-234-U-238 DISEQUILIBRIA [J].
COALE, KH ;
BRULAND, KW .
LIMNOLOGY AND OCEANOGRAPHY, 1987, 32 (01) :189-200
[7]   FEEDING MECHANISM AND HOUSE OF THE APPENDICULARIAN OIKOPLEURA-VANHOEFFENI [J].
DEIBEL, D .
MARINE BIOLOGY, 1986, 93 (03) :429-436
[8]   FILTER FEEDING BY OIKOPLEURA-VANHOEFFENI - GRAZING IMPACT ON SUSPENDED PARTICLES IN COLD OCEAN WATERS [J].
DEIBEL, D .
MARINE BIOLOGY, 1988, 99 (02) :177-186
[9]  
Fowler S.W., 1982, POLLUTION TRANSFER T, VII, P1
[10]   ROLE OF LARGE PARTICLES IN THE TRANSPORT OF ELEMENTS AND ORGANIC-COMPOUNDS THROUGH THE OCEANIC WATER COLUMN [J].
FOWLER, SW ;
KNAUER, GA .
PROGRESS IN OCEANOGRAPHY, 1986, 16 (03) :147-194