AN ALTERNATE NUMERICAL-SOLUTION TO THE LINEAR-QUADRATIC PROBLEM

被引:41
作者
PERES, PLD
GEROMEL, JC
机构
[1] LAC-DT/Faculty of Electrical Engineering, UNICAMP, 13081–970, Campinas, SP
关键词
D O I
10.1109/9.273368
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note proposes a new method, based on convex programming, for solving the Linear Quadratic Problem (LQP) directly on the parameter space generated by the feedback control gain. All stabilizing controllers are mapped into a convex set; the problem is then formulated as a minimization of a linear function over this convex set. Its optimal solution furnishes, under certain conditions, the same feedback control gain obtained from the classical Riccati equation. Generalizations to decentralized control and output feedback control design are included. The theory is illustrated by some numerical examples.
引用
收藏
页码:198 / 202
页数:5
相关论文
共 10 条
[1]  
Anderson B. D. O., 1971, LINEAR OPTIMAL CONTR
[2]   A LINEAR-PROGRAMMING ORIENTED PROCEDURE FOR QUADRATIC STABILIZATION OF UNCERTAIN SYSTEMS [J].
BERNUSSOU, J ;
PERES, PLD ;
GEROMEL, JC .
SYSTEMS & CONTROL LETTERS, 1989, 13 (01) :65-72
[3]  
BOYD S, 1989, INT J CONTROL, V49, P2215
[4]   STATE-SPACE SOLUTIONS TO STANDARD H-2 AND H-INFINITY CONTROL-PROBLEMS [J].
DOYLE, JC ;
GLOVER, K ;
KHARGONEKAR, PP ;
FRANCIS, BA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (08) :831-847
[5]   ON A CONVEX PARAMETER SPACE METHOD FOR LINEAR-CONTROL DESIGN OF UNCERTAIN SYSTEMS [J].
GEROMEL, JC ;
PERES, PLD ;
BERNUSSOU, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (02) :381-402
[6]   MIXED H-2/H-INFINITY CONTROL - A CONVEX-OPTIMIZATION APPROACH [J].
KHARGONEKAR, PP ;
ROTEA, MA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (07) :824-837
[7]   ON AN ITERATIVE TECHNIQUE FOR RICCATI EQUATION COMPUTATIONS [J].
KLEINMAN, DL .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1968, AC13 (01) :114-+
[8]   SCHUR METHOD FOR SOLVING ALGEBRAIC RICCATI-EQUATIONS [J].
LAUB, AJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1979, 24 (06) :913-921
[9]  
LUENBERGER DG, 1973, INTRO LINEAR PROGRAM
[10]  
Skelton R.E., 1987, DYNAMIC SYSTEMS CONT