NON-SIMPLE TURNING-POINTS AND CUSPS

被引:76
作者
SPENCE, A [1 ]
WERNER, B [1 ]
机构
[1] INST ANGEW MATH,D-2000 HAMBURG 13,FED REP GER
关键词
Nonlinear problems - Numerical computations - Numerical procedures - Parameter dependents - Simple++ - Thermal ignition - Turning-points - Two parameter;
D O I
10.1093/imanum/2.4.413
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stimulated by a problem in the theory of thermal ignition, we prove some results on non-simple turning points and corresponding cusps for two parameter-dependent non-linear problems. These results provide a theoretical basis for the numerical computation of non-simple turning points or cusps. The numerical procedure is illustrated for the thermal ignition problem. © 1982 Academic Pren Inc. (London) Limited.
引用
收藏
页码:413 / 427
页数:15
相关论文
共 23 条
[1]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[2]   AN EXTENSION OF NEWTON-KANTOROVIC METHOD FOR SOLVING NONLINEAR EQUATIONS WITH AN APPLICATION TO ELASTICITY [J].
ANSELONE, PM ;
MOORE, RH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1966, 13 (03) :476-&
[3]  
BAZLEY NW, 1979, Z ANGEW MATH PHYS, V29, P971
[4]   THERMAL EXPLOSIONS AND THE DISAPPEARANCE OF CRITICALITY AT SMALL ACTIVATION-ENERGIES - EXACT RESULTS FOR THE SLAB [J].
BODDINGTON, T ;
GRAY, P ;
ROBINSON, C .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1979, 368 (1735) :441-461
[5]   FINITE DIMENSIONAL APPROXIMATION OF NON-LINEAR PROBLEMS .2. LIMIT POINTS [J].
BREZZI, F ;
RAPPAZ, J ;
RAVIART, PA .
NUMERISCHE MATHEMATIK, 1981, 37 (01) :1-28
[6]  
BREZZI F, 1982, UNPUB NUMERICAL IMPE
[7]  
CHOW SN, 1975, ARCH RATION MECH AN, V59, P159
[8]  
CHU KW, 1980, DEFERRED CORRECTION
[9]  
CRANDALL MG, 1973, ARCH RATION MECH AN, V52, P161, DOI 10.1007/BF00282325
[10]  
DECKER DW, 1982, UNPUB PATH FOLLOWING