HIGH-ORDER APPROXIMATIONS TO STURM-LIOUVILLE EIGENVALUES

被引:26
作者
PRUESS, S [1 ]
机构
[1] UNIV NEW MEXICO,DEPT MATH & STATISTICS,ALBUQUERQUE,NM 87131
关键词
D O I
10.1007/BF01436595
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:241 / 247
页数:7
相关论文
共 10 条
[1]  
BIRKHOFF G, 1970, NUMERICAL SOLUTION F, P111
[2]  
BOOR CD, 1973, SIAM J NUMER ANAL, V10, P582, DOI DOI 10.1137/0710052
[3]  
Canosa J., 1970, Journal of Computational Physics, V5, P188, DOI 10.1016/0021-9991(70)90059-8
[4]  
Collatz L., 1966, NUMERICAL TREATMENT, V3
[5]  
Davis P. J., 1967, NUMERICAL INTEGRATIO
[6]  
Gordon R.G., 1971, METHOD COMPUT PHYS, V10, P81
[7]   ESTIMATING EIGENVALUES OF STURM-LIOUVILLE PROBLEMS BY APPROXIMATING DIFFERENTIAL EQUATION [J].
PRUESS, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (01) :55-68
[8]  
PRUESS S, 1973, 283 U NEW MEX TECHN
[9]  
PRUESS SA, 1973, MATH COMPUT, V27, P551, DOI 10.1090/S0025-5718-1973-0371100-1
[10]  
Wilkinson J. H., 1965, ALGEBRAIC EIGENVALUE