OPTIMAL DESIGNS FOR LARGE DEGREE POLYNOMIAL REGRESSION

被引:23
作者
KIEFER, J
STUDDEN, WJ
机构
[1] CORNELL UNIV,DEPT MATH,ITHACA,NY 14850
[2] PURDUE UNIV,DEPT STATISTICS,W LAFAYETTE,IN 47907
关键词
D O I
10.1214/aos/1176343646
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:1113 / 1123
页数:11
相关论文
共 13 条
[1]   On interpolation. III. Interpolatory theory of polynomials [J].
Erdos, P ;
Turan, P .
ANNALS OF MATHEMATICS, 1940, 41 :510-553
[2]  
Fedorov V, 1972, THEORY OPTIMAL EXPT
[3]  
Grenander U., 1958, CALIFORNIA MONOGRAPH
[4]   OPTIMAL SPACING + WEIGHTING IN POLYNOMIAL PREDICTION [J].
HOEL, PG ;
LEVINE, A .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (04) :1553-&
[5]  
Jolley L. B. W., 1961, SUMMATION SERIES
[6]   OPTIMAL EXPERIMENTAL DESIGNS [J].
KARLIN, S ;
STUDDEN, WJ .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (04) :783-&
[7]  
Karlin S., 1966, J AM STATIS ASS
[8]   OPTIMAL DESIGN - VARIATION IN STRUCTURE AND PERFORMANCE UNDER CHANGE OF CRITERION [J].
KIEFER, J .
BIOMETRIKA, 1975, 62 (02) :277-288
[9]   GENERAL EQUIVALENCE THEORY FOR OPTIMUM DESIGNS (APPROXIMATE THEORY) [J].
KIEFER, J .
ANNALS OF STATISTICS, 1974, 2 (05) :849-879
[10]  
KIEFER J, 1961, 4 P BERK S MATH STAT, V1, P381