A MOVING-MESH FINITE-ELEMENT METHOD WITH LOCAL REFINEMENT FOR PARABOLIC PARTIAL-DIFFERENTIAL EQUATIONS

被引:42
作者
ADJERID, S [1 ]
FLAHERTY, JE [1 ]
机构
[1] RENSSELAER POLYTECH INST,DEPT COMP SCI,TROY,NY 12180
关键词
D O I
10.1016/0045-7825(86)90083-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:3 / 26
页数:24
相关论文
共 34 条
[1]  
ADJERID S, UNPUB SIAM J NUMER A
[2]  
ADJERID S, 1985, THESIS RENSSELAER PO
[3]  
ARNEY DC, UNPUB J COMPUT PHYS
[4]  
BABUSKA I, 1981, BN968 U MAR I PHYS S
[5]  
Babuska I., 1983, ADAPTIVE COMPUTATION, P57
[6]  
BABUSKA I, 1986, ACCURACY ESTIMATES A
[7]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[8]   AN ADAPTIVE, MULTILEVEL METHOD FOR ELLIPTIC BOUNDARY-VALUE-PROBLEMS [J].
BANK, RE ;
SHERMAN, AH .
COMPUTING, 1981, 26 (02) :91-105
[9]   AN ADAPTIVE GRID FINITE-DIFFERENCE METHOD FOR CONSERVATION-LAWS [J].
BELL, JB ;
SHUBIN, GR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 52 (03) :569-591
[10]   ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BERGER, MJ ;
OLIGER, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) :484-512