ADJOINT-OPERATORS AND NONADIABATIC LEARNING ALGORITHMS IN NEURAL NETWORKS

被引:7
作者
TOOMARIAN, N
BARHEN, J
机构
[1] CALTECH,JET PROP LAB,PASADENA,CA 91109
[2] CALTECH,DIV ENGN & APPL SCI,PASADENA,CA 91109
基金
美国国家航空航天局;
关键词
D O I
10.1016/0893-9659(91)90172-R
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Adjoint sensitivity equations are presented, which can be solved simultaneously (i.e., forward in time) with the dynamics of a nonlinear neural network. These equations provide the foundations for a new methodology which enables the implementation of temporal learning algorithms in a highly efficient manner.
引用
收藏
页码:69 / 73
页数:5
相关论文
共 15 条
[1]  
BARHEN J, 1990, IN PRESS NONLIPSCHIT
[2]  
BARHEN J, 1989, IEEE COMPUT, V22, P67
[3]  
BARHEN J, 1990, IN PRESS APPL MATH L
[4]  
Barhen J., 1990, ADV NEURAL INFORMATI, V2, P498
[5]  
Basar E., 1980, EEG BRAIN DYNAMICS
[7]   CONVERGENT ACTIVATION DYNAMICS IN CONTINUOUS-TIME NETWORKS [J].
HIRSCH, MW .
NEURAL NETWORKS, 1989, 2 (05) :331-349
[8]  
McClelland J. L., 1986, PARALLEL DISTRIBUTED, V1
[9]   Learning State Space Trajectories in Recurrent Neural Networks [J].
Pearlmutter, Barak A. .
NEURAL COMPUTATION, 1989, 1 (02) :263-269
[10]  
Pineda F. J., 1988, Journal of Complexity, V4, P216, DOI 10.1016/0885-064X(88)90021-0