BREAKDOWN OF UNIVERSALITY IN RENORMALIZATION DYNAMICS FOR CRITICAL INVARIANT TORUS

被引:19
作者
ARTUSO, R
CASATI, G
SHEPELYANSKY, DL
机构
[1] NATL INST NUCL PHYS,MILAN,ITALY
[2] NOVOSIBIRSK NUCL PHYS INST,NOVOSIBIRSK 630090,USSR
来源
EUROPHYSICS LETTERS | 1991年 / 15卷 / 04期
关键词
THEORY AND MODELS OF CHAOTIC SYSTEMS; FUNCTION THEORY; ANALYSIS; HYDRODYNAMIC STABILITY AND INSTABILITY;
D O I
10.1209/0295-5075/15/4/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider properties of critical invariant tori with two fixed winding numbers in volume-preserving maps. We present numerical evidence for the existence of different renormalization dynamics on small scales which corresponds to breakdown of universality.
引用
收藏
页码:381 / 386
页数:6
相关论文
共 17 条
[1]  
BIRKHOFF GD, DYNAMICAL SYSTEMS, P1027
[2]   HYDROGEN-ATOM IN MONOCHROMATIC-FIELD - CHAOS AND DYNAMICAL PHOTONIC LOCALIZATION [J].
CASATI, G ;
GUARNERI, I ;
SHEPELYANSKY, DL .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1988, 24 (07) :1420-1444
[3]  
CASATI G, 1988, IEEE J QUANTUM ELECT, V24, P1436
[4]  
Cassels J.W.S., 1957, INTRO DIOPHANTINE AP
[5]   CORRELATION-PROPERTIES OF DYNAMICAL CHAOS IN HAMILTONIAN-SYSTEMS [J].
CHIRIKOV, BV ;
SHEPELYANSKY, DL .
PHYSICA D, 1984, 13 (03) :395-400
[6]  
CHIRKOV BV, 1988, CHAOS BORDER STATIST, P221
[7]   QUASI-PERIODICITY IN DISSIPATIVE SYSTEMS - A RENORMALIZATION-GROUP ANALYSIS [J].
FEIGENBAUM, MJ ;
KADANOFF, LP ;
SHENKER, SJ .
PHYSICA D, 1982, 5 (2-3) :370-386
[8]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[9]   UNIVERSAL METRIC PROPERTIES OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1979, 21 (06) :669-706
[10]   HAMILTONIAN MAPS IN THE COMPLEX-PLANE [J].
GREENE, JM ;
PERCIVAL, IC .
PHYSICA D, 1981, 3 (03) :530-548