Balanced 0,+/-1-matrices, bicoloring and total dual integrality

被引:18
作者
Conforti, M [1 ]
Cornuejols, G [1 ]
机构
[1] CARNEGIE MELLON UNIV, PITTSBURGH, PA 15213 USA
基金
美国国家科学基金会;
关键词
combinatorial optimization; integrality of polyhedra; generalized set packing; covering;
D O I
10.1007/BF01590956
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A 0, +/-1-matrix A is balanced if, in every submatrix with two nonzero entries per row and column, the sum of the entries is a multiple of four. This definition was introduced by Truemper (1978) and generalizes the notion of a balanced 0, 1-matrix introduced by Berge (1970). In this paper, we extend a bicoloring theorem of Berge (1970) and total dual integrality results of Fulkerson, Hoffman and Oppenheim (1974) to balanced 0, +/-1-matrices.
引用
收藏
页码:249 / 258
页数:10
相关论文
共 19 条
[1]  
BERGE C, 1980, MATH PROGRAM STUD, V12, P163, DOI 10.1007/BFb0120894
[2]   MINIMAX RELATIONS FOR THE PARTIAL Q-COLORINGS OF A GRAPH [J].
BERGE, C .
DISCRETE MATHEMATICS, 1989, 74 (1-2) :3-14
[3]  
BERGE C, 1970, ANN NY ACAD SCI, V175, P32
[4]  
BERGE C, 1970, C MATH SOC J BOLYAI, V4, P119
[5]  
Berge C, 1972, MATH PROGRAM, V2, P19, DOI 10.1007/BF01584535
[6]  
Berge C., 1984, ANN DISCRETE MATH, V21, P3
[7]  
CDAMION P, 1963, CAHIERS CTR ETUDES R, V5, P181
[8]  
CONFORTI M, IN PRESS J COMBINA B
[9]  
CONFORTI M, 1991, DECOMPOSITION BALA 1
[10]  
CONFORTI M, IN PRESS J ASS COMPU