Design for maximal flexibility as a simple computational model of damage

被引:18
作者
Achtziger, W
Bendsoe, MP
机构
[1] Mathematical Institute, University of Bayreuth, Bayreuth
[2] Mathematical Institute, Technical University of Denmark, Lyngby
来源
STRUCTURAL OPTIMIZATION | 1995年 / 10卷 / 3-4期
关键词
Algorithms - Calculations - Defects - Elasticity - Failure (mechanical) - Mathematical models - Optimization - Stiffness matrix - Structural loads - Structural members - Trusses;
D O I
10.1007/BF01742601
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider a simple model of damage, where damage is interpreted as the removal of material from a given truss structure. Occuring damage in a given scenario is modelled by a damage contribution which maximizes compliance. Assuming linear elasticity this leads to an optimization problem formulated in displacements and a set of variables which describe the damaged material of each bar in the truss. A sequence of such problems models damage as a time-dependent process, i.e. damage evolution is considered. A simple ad-hoc-method for the resulting nonconvex problems can be interpreted as a descent algorithm of feasible directions which reaches a local optimum in a finite number of steps. Some numerical examples show the use of the algorithm.
引用
收藏
页码:258 / 268
页数:11
相关论文
共 9 条
[1]  
Achtziger W., Bendsoe M.P., Ben-Tal A., Zowe J., Equivalent displacement based formulations for maximum strength truss topology design, Impact Comp. Sci. Eng., 4, pp. 315-345, (1992)
[2]  
Francfort G.A., Marigo J.-J., Mathematical analysis of the damage evolution in a brittle damaging continuous medium, Mecanique, modelisation numerique et dynamique des materiaux. Publ. du Lab. de Mecanique at d'Acoustique de Marseilles, pp. 245-276, (1991)
[3]  
Francfort G.A., Marigo J.-J., Stable damage evolution in a brittle continuous medium, Eur. J. Mech. A/Solids, 12, pp. 149-189, (1993)
[4]  
Kirsch U., Optimal topologies of structures, Appl. Mech. Rev., 42, pp. 223-239, (1989)
[5]  
Olhoff N., Taylor J.E., On optimal structural remodeling, JOTA, 27, pp. 571-582, (1979)
[6]  
Rockafellar R.T., Convex analysis, (1970)
[7]  
Schramm H., Zowe J., A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results, SIAM Journal on Optimization, 2, 1, pp. 121-152, (1992)
[8]  
Svanberg K., On truss sizing based on explicit Taylor series expansions, Struct. Optim., 2, pp. 153-162, (1990)
[9]  
Svanberg K., On the convexity and concavity of compliances, Struct. Optim., 7, pp. 42-46, (1993)