CENTRAL LIMIT-THEOREMS FOR DOUBLY ADAPTIVE BIASED COIN DESIGNS

被引:59
作者
EISELE, JR [1 ]
WOODROOFE, MB [1 ]
机构
[1] UNIV MICHIGAN,DEPT STAT,ANN ARBOR,MI 48109
关键词
EXPONENTIAL FAMILIES; INVARIANCE PRINCIPLE; MARTINGALE CENTRAL LIMIT THEOREM; SEQUENTIAL ALLOCATION;
D O I
10.1214/aos/1176324465
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Asymptotic normality of the difference between the number of subjects assigned to a treatment and the desired number to be assigned is established for allocation rules which use Eisele's biased coin design. Subject responses are assumed to be independent random variables from standard exponential families. In the proof, it is shown that the difference may be magnified by appropriate constants so that the magnified difference is nearly a martingale. An application to the Behrens-Fisher problem in the normal case is described briefly.
引用
收藏
页码:234 / 254
页数:21
相关论文
empty
未找到相关数据