MINIMIZING THE PROBABILITY OF RUIN WHEN CLAIMS FOLLOW BROWNIAN MOTION WITH DRIFT

被引:294
作者
Promislow, S. [1 ]
Young, Virginia [2 ]
机构
[1] York Univ, Dept Math & Stat, 4700 Keele St, Toronto, ON M3J 1P3, Canada
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
D O I
10.1080/10920277.2005.10596214
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We extend the work of Browne (1995) and Schmidli (2001), in which they minimize the probability of ruin of an insurer facing a claim process modeled by a Brownian motion with drift. We consider two controls to minimize the probability of ruin: (1) investing in a risky asset and (2) purchasing quota-share reinsurance. We obtain an analytic expression for the minimum probability of ruin and the corresponding optimal controls, and we demonstrate our results with numerical examples.
引用
收藏
页码:109 / 128
页数:20
相关论文
共 14 条
[1]  
Aczel J., 1966, LECT FUNCTIONAL EQUA
[2]  
ARNOLD LUDWIG, 1964, STOCHASTIC DIFFERENT
[3]  
Bowers N.L., 1997, ACTUARIAL MATH
[5]  
GERBER HANS U., 1975, ASTIN BULL, V8, P307
[6]  
GRANDELL J, 1991, ASPECTS RISK THEORY
[7]   Optimal investment for insurers [J].
Hipp, C ;
Plum, M .
INSURANCE MATHEMATICS & ECONOMICS, 2000, 27 (02) :215-228
[8]   Stochastic control for optimal new business [J].
Hipp, C ;
Taksar, M .
INSURANCE MATHEMATICS & ECONOMICS, 2000, 26 (2-3) :185-192
[9]  
Karatzas I., 1991, BROWNIAN MOTION STOC, V113
[10]  
Klugman S., 1998, LOSS MODELS DATA DEC