STRONG LIMIT-THEOREMS FOR GENERAL SUPERCRITICAL BRANCHING-PROCESSES WITH APPLICATIONS TO BRANCHING DIFFUSIONS

被引:39
作者
ASMUSSEN, S
HERING, H
机构
[1] KOBENHAVNS UNIV,INST MATH STATISTIK,DK-2100 KOBENHAVEN 0,DENMARK
[2] UNIV REGENSBURG,FACHBEREICH MATH,D-8400 REGENSBURG 2,FED REP GER
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1976年 / 36卷 / 03期
关键词
D O I
10.1007/BF00532545
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:195 / 212
页数:18
相关论文
共 26 条
[1]   CONVERGENCE RATES FOR BRANCHING PROCESSES [J].
ASMUSSEN, S .
ANNALS OF PROBABILITY, 1976, 4 (01) :139-146
[2]   SOME RESULTS ON MULTITYPE CONTINUOUS TIME MARKOV BRANCHING PROCESSES [J].
ATHREYA, KB .
ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02) :347-&
[3]   A SIMPLE PROOF OF A RESULT OF KESTEN AND STIGUM ON SUPERCRITICAL MULTITYPE GALTON-WATSON BRANCHING PROCESS [J].
ATHREYA, KB .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (01) :195-&
[4]   NOTE ON A FUNCTIONAL EQUATION ARISING IN GALTON-WATSON BRANCHING PROCESSES [J].
ATHREYA, KB .
JOURNAL OF APPLIED PROBABILITY, 1971, 8 (03) :589-&
[5]  
Athreya KB, 1969, J MATH KYOTO U, V9, P41, DOI 10.1215/kjm/1250524010
[6]  
Billingsley P, 1968, CONVERGENCE PROBABIL
[7]  
Bingham N. H., 1974, Advances in Applied Probability, V6, P711, DOI 10.2307/1426188
[8]  
Coddington E. A., 1955, THEORY ORDINARY DIFF