MATRIX-METHODS FOR THE NUMERICAL-SOLUTION OF RELATIVISTIC WAVE-EQUATIONS

被引:23
作者
DURAND, L
GARA, A
机构
[1] Department of Physics, University of Wisconsin - Madison, Madison
[2] Fermilab - E790, Batavia, IL 60510
关键词
D O I
10.1063/1.528631
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An efficient new method is presented for the solution of eigenvalue problems that involve nonlocal operators of the type that appear in the solution of relativistic wave equations. The method, which has wider utility, allows very accurate results to be obtained with small matrix approximations to the eigenvalue equation. The method is illustrated for the equation [2( - ∇2 + m2)1/2 + V(r) - M]ψ = 0. © 1990 American Institute of Physics.
引用
收藏
页码:2237 / 2243
页数:7
相关论文
共 23 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS
[2]  
Davis P. J., 1967, NUMERICAL INTEGRATIO
[3]   QUARKONIA FROM CHARMONIUM AND RENORMALIZATION GROUP EQUATIONS [J].
DITSAS, P ;
MCDOUGALL, NA ;
MOORHOUSE, RG .
NUCLEAR PHYSICS B, 1978, 146 (01) :191-204
[4]  
DURAN L, 1985, POLYNOMES ORTHOGONAU, P331
[5]   RELATIVISTIC DESCRIPTION OF QUARK-ANTIQUARK BOUND-STATES - SPIN-INDEPENDENT TREATMENT [J].
GARA, A ;
DURAND, B ;
DURAND, L ;
NICKISCH, LJ .
PHYSICAL REVIEW D, 1989, 40 (03) :843-854
[6]  
GARA A, 1987, THESIS U WISCONSIN M
[7]  
GARA A, MADTH904 U WISC MAD
[8]  
Ghizzetti A., 1970, QUADRATURE FORMULAE
[9]   MESONS IN A RELATIVIZED QUARK-MODEL WITH CHROMODYNAMICS [J].
GODFREY, S ;
ISGUR, N .
PHYSICAL REVIEW D, 1985, 32 (01) :189-231
[10]   SEMIRELATIVISTIC POTENTIAL MODEL FOR CHARMONIUM [J].
GUPTA, SN ;
RADFORD, SF ;
REPKO, WW .
PHYSICAL REVIEW D, 1985, 31 (01) :160-163