ENDOMORPHISMS OF SEMIMODULES OVER SEMIRINGS WITH AN IDEMPOTENT OPERATION

被引:7
作者
DUDNIKOV, PI
SAMBORSKII, SN
机构
来源
MATHEMATICS OF THE USSR-IZVESTIYA | 1992年 / 38卷 / 01期
关键词
D O I
10.1070/IM1992v038n01ABEH002188
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an arbitrary endomorphism A of the free semimodule K(n) over an Abelian semiring K with operations + and . it is shown under the assumption that + is idempotent (and under certain other restrictions on K) that there exists a nontrivial "spectrum", i.e., there exist a lambda is-an-element-of K and a nontrivial subsemimodule J such that Af = lambda . f for any f is-an-element-of J. The same result is also obtained for endomorphism analogues of integral operators (in the sense of the theory of dempotent integration). In terms of this spectrum investigations are made of the asymptotic behavior of endomorphisms under iteration and of convergence of the "Neumann series" appearing in the solution of the equations y = Ay + f. The simplest examples are connected with the semiring {K = R union {-infinity}, + = max, . = +} and arise, for example, in dynamic programming problems.
引用
收藏
页码:91 / 105
页数:15
相关论文
共 7 条
[1]  
[Anonymous], 1969, THEORY MATRICES
[2]  
DAVIS M, 1977, APPLIED NONSTANDARD
[3]  
Lang S., 1965, ALGEBRA
[4]  
MASLOV VP, 1987, DOKL AKAD NAUK SSSR+, V292, P37
[5]  
MASLOV VP, 1987, USP MAT NAUK, V42, P39
[6]  
MASLOV VP, 1987, AYMPTOTIC METHODS SO
[7]  
Zvonkin A. K., 1984, USP MAT NAUK, V39, P77