We consider the (massless) scalar field on 2-dimensional manifolds whose metric changes signature and which admit a spacelike isometry. Choosing the wave equation so that there will be a conserved Klein-Gordon product implicitly determines the junction conditions one needs to impose in order to obtain global solutions. The resulting mix of positive and negative frequencies produced by the presence of Euclidean regions depends only on the total width of the regions, and not on the detailed form of the metric.