ON THE NUMERICAL-SOLUTION OF THE GENERALIZED PRANDTL EQUATION USING VARIATION-DIMINISHING SPLINES

被引:7
作者
CALIO, F
MARCHETTI, E
RABINOWITZ, P
机构
[1] POLITECN MILAN, DIPARTIMENTO MATEMAT, I-20133 MILAN, ITALY
[2] WEIZMANN INST SCI, DEPT APPL MATH & COMP SCI, IL-76100 REHOVOT, ISRAEL
关键词
APPROXIMATING SPLINES; B-SPLINES; CAUCHY PRINCIPAL VALUE; INTEGRAL EQUATIONS;
D O I
10.1016/0377-0427(94)00024-U
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Convergence results are proved for Cauchy principal value integrals of the Schoenberg variation-diminishing splines and its first derivative. The use of such splines in the numerical solution of the Prandtl and generalized Prandtl integral equations is proposed. A Nystrom-type method and a modified Nystrom method are used and compared computationally.
引用
收藏
页码:297 / 307
页数:11
相关论文
共 9 条
[1]  
Dagnino, Demichelis, Santi, Numerical integration based on quasi-interpolating splines, Computing, 50, pp. 149-163, (1993)
[2]  
Dagnino, Demichelis, Santi, An algorithm for numerical integration based on quasi-interpolating splines, Numer. Algorithms, 5, pp. 443-452, (1993)
[3]  
Gerasoulis, Piecewise-Polynomial Quadratures for Cauchy Singular Integrals, SIAM Journal on Numerical Analysis, 23, pp. 891-902, (1986)
[4]  
Lyche, Schumaker, Local spline approximation methods, J. Approx. Theory, 15, pp. 294-325, (1975)
[5]  
Monegato, Pennacchietti, Quadrature rules for Prandtl's integral equation, Computing, 37, pp. 31-42, (1986)
[6]  
Palamara Orsi, Spline approximation for Cauchy principal value integrals, J. Comput. Appl. Math., 30, pp. 191-201, (1990)
[7]  
Rabinowitz, Numerical integration based on approximating splines, J. Comput. Appl. Math., 33, pp. 73-83, (1990)
[8]  
Rabinowitz, Uniform convergence results for Cauchy principal value integrals, Mathematics of Computation, 56, pp. 731-740, (1991)
[9]  
Rabinowitz, Application of approximating splines for the solution of Cauchy singular integral equations, Appl. Numer. Math., 15, pp. 285-297, (1994)