GEOMETRIC REPRESENTATION OF SEQUENCES OF COMPLEXITY 2N+1

被引:240
作者
ARNOUX, P
RAUZY, G
机构
[1] UNIV PARIS 07,F-75251 PARIS 05,FRANCE
[2] FAC SCI LUMINY,DMI,F-13008 MARSEILLE,FRANCE
来源
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE | 1991年 / 119卷 / 02期
关键词
D O I
10.24033/bsmf.2164
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that all minimal sequences of complexity 2n + 1, satisfying to a combinatorial condition, can be represented by an interval exchange on six intervals; this generalizes a classical result on representation of sturmian sequences by rotations.
引用
收藏
页码:199 / 215
页数:17
相关论文
共 8 条
[1]  
ARNOUX P, 1981, CR ACAD SCI I-MATH, V292, P75
[2]  
ARNOUX P, 1986, B SOC MATH FRANCE, V116, P489
[3]  
ITO S, RAUZY FRACTAL
[4]   INTERVAL EXCHANGE TRANSFORMATIONS [J].
KEANE, M .
MATHEMATISCHE ZEITSCHRIFT, 1975, 141 (01) :25-31
[6]  
RAUZY G, 1982, B SOC MATH FR, V110, P147
[7]  
RAUZY G, ROTATIONS GROUPES NO
[8]  
RAUZY G., 1983, SEMINAIRE THEORIE NO, V25, P1