NEW TYPES OF SOLITON-SOLUTIONS

被引:14
作者
GESZTESY, F [1 ]
KARWOWSKI, W [1 ]
ZHAO, Z [1 ]
机构
[1] WROCLAW UNIV,INST THEORET PHYS,PL-50205 WROCLAW,POLAND
关键词
D O I
10.1090/S0273-0979-1992-00309-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We announce a detailed investigation of limits of N-soliton solutions of the Korteweg-deVries (KdV) equation as N tends to infinity. Our main results provide new classes of KdV-solutions including in particular new types of soliton-like (reflectionless) solutions. As a byproduct we solve an inverse spectral problem for one-dimensional Schrodinger operators and explicitly construct smooth and real-valued potentials that yield a purely absolutely continuous spectrum on the nonnegative real axis and give rise to an eigenvalue spectrum that includes any prescribed countable and bounded subset of the negative real axis.
引用
收藏
页码:266 / 272
页数:7
相关论文
共 13 条
[1]   INVERSE SCATTERING ON THE LINE [J].
DEIFT, P ;
TRUBOWITZ, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (02) :121-251
[2]   APPLICATIONS OF A COMMUTATION FORMULA [J].
DEIFT, PA .
DUKE MATHEMATICAL JOURNAL, 1978, 45 (02) :267-310
[3]  
Duren P., 1970, THEORY HPSPACES
[4]   KORTEWEG-DEVRIES EQUATION AND GENERALIZATIONS .6. METHODS FOR EXACT SOLUTION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (01) :97-133
[5]  
Gelfand I. M., 1975, RUSS MATH SURVEYS, V30, P67, DOI 10.1070/RM1975v030n05ABEH001522
[6]  
GESZTESY F, IN PRESS DUKE MATH J
[7]  
GESZTESY F, UNPUB
[8]  
GROSSE H, 1980, ACTA PHYS AUSTRIACA, V52, P89
[9]  
Hewitt E., 1965, REAL ABSTRACT ANAL
[10]  
Lieb Elliott H., 2015, STUDIES MATH PHYS, P269