APPROXIMATION BY SUPERPOSITION OF SIGMOIDAL AND RADIAL BASIS FUNCTIONS

被引:175
作者
MHASKAR, HN [1 ]
MICCHELLI, CA [1 ]
机构
[1] IBM CORP,THOMAS J WATSON RES CTR,YORKTOWN HTS,NY 10598
关键词
D O I
10.1016/0196-8858(92)90016-P
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let σ: R → R be such that for some polynomial P, σ P is bounded. We consider the linear span of the functions {σ(λ · (x - t)): λ, t ε{lunate} Rs}. We prove that unless σ is itself a polynomial, it is possible to uniformly approximate any continuous function on Rs arbitrarily well on every compact subset of Rs by functions in this span. Under more specific conditions on σ, we give algorithms to achieve this approximation and obtain Jackson-type theorems to estimate the degree of approximation. © 1992.
引用
收藏
页码:350 / 373
页数:24
相关论文
共 25 条
[1]  
BARRON AR, 1990, UNIVERSAL APPROXIMAT
[2]  
CAROLL SM, 1990, CONSTRUCTION NEURAL
[3]  
CHEN TP, 1990, CONSTRUCTIVE PROOF A
[4]  
CHUI CK, 1991, CAT244 TEX A M U REP
[5]  
CHUI CK, 1990, CAT222 TEX A M U REP
[6]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
[7]  
DAHMEN W, 1983, LINEAR ALGEBRA APPL, V52-3, P217
[8]  
Dahmen W., 1987, APPROX THEORY APPL, V3, P139
[9]  
De Vore R., 1976, APPROXIMATION THEORY, P117
[10]   OPTIMAL NONLINEAR APPROXIMATION [J].
DEVORE, RA ;
HOWARD, R ;
MICCHELLI, C .
MANUSCRIPTA MATHEMATICA, 1989, 63 (04) :469-478