POSITIVE LYAPUNOV EXPONENTS IN THE KRAMERS OSCILLATOR

被引:41
作者
SCHIMANSKYGEIER, L [1 ]
HERZEL, H [1 ]
机构
[1] HUMBOLDT UNIV,INST THEORET PHYS,O-1040 BERLIN,GERMANY
关键词
STOCHASTIC NONLINEAR SYSTEMS; LYAPUNOV EXPONENTS;
D O I
10.1007/BF01053959
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The maximum Lyapunov exponent is computed numerically for the double-well oscillator in a heat bath. Positive exponents are found in a wide range of friction coefficients in the low-damping regime.
引用
收藏
页码:141 / 147
页数:7
相关论文
共 15 条
[1]  
Anishchenko V.S., 1990, COMPLEX OSCILLATIONS
[2]   NOISE-INDUCED CHAOS IN A SYSTEM WITH HOMOCLINIC POINTS [J].
ANISHCHENKO, VS ;
HERZEL, H .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (07) :317-318
[3]  
Arnold L., 1986, LYAPUNOV EXPONENTS
[4]  
BULSARA AR, 1990, PHYS REV A, V48, P4614
[5]   FLUCTUATIONS AND SIMPLE CHAOTIC DYNAMICS [J].
CRUTCHFIELD, JP ;
FARMER, JD ;
HUBERMAN, BA .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1982, 92 (02) :45-82
[6]   INFLUENCE OF NOISE ON DUFFING-VAN-DER POL OSCILLATORS [J].
EBELING, W ;
HERZEL, H ;
RICHERT, W ;
SCHIMANSKYGEIER, L .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1986, 66 (03) :141-146
[7]  
EBELING W, 1988, CHEM BIOL ORG, P166
[8]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[9]  
HANGGI P, 1990, REV MOD PHYS, V62, P251, DOI 10.1103/RevModPhys.62.251
[10]  
HERZEL H, 1987, Z NATURFORSCH A, V38, P1157