PERCOLATION CONDUCTIVITY OF PENROSE TILING BY THE TRANSFER-MATRIX MONTE-CARLO METHOD

被引:4
作者
BABALIEVSKI, FV
机构
[1] Bulgarian Academy of Sciences, Institute of General and Inorganic Chemistry
来源
PHYSICA A | 1992年 / 182卷 / 03期
关键词
D O I
10.1016/0378-4371(92)90346-R
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A generalization of the Derrida and Vannimenus transfer-matrix Monte Carlo method has been applied to calculations of the percolation conductivity in a Penrose tiling. Strips with a length approximately 10(4) and widths from 3 to 19 have been used. Disregarding the differences for smaller strip widths (up to 7), the results show that the percolative conductivity of a Penrose tiling has a value very close to that of a square lattice. The estimate for the percolation transport exponent once more confirms the universality conjecture for the 0-1 distribution of resistors.
引用
收藏
页码:325 / 330
页数:6
相关论文
共 15 条
[1]  
BABALIEVSKI F, 1990, COMPUT PHYS COMMUN, V60, P253
[2]   PERCOLATIVE CONDUCTIVITY OF APERIODIC LATTICES BY TRANSFER-MATRIX ALGORITHM [J].
BABALIEVSKI, FV .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1991, 84 (03) :429-431
[3]   A TRANSFER-MATRIX PROGRAM TO CALCULATE THE CONDUCTIVITY OF RANDOM RESISTOR NETWORKS [J].
DERRIDA, B ;
ZABOLITZKY, JG ;
VANNIMENUS, J ;
STAUFFER, D .
JOURNAL OF STATISTICAL PHYSICS, 1984, 36 (1-2) :31-42
[4]   A TRANSFER-MATRIX APPROACH TO RANDOM RESISTOR NETWORKS [J].
DERRIDA, B ;
VANNIMENUS, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (10) :L557-L564
[5]   DIFFERENCES BETWEEN LATTICE AND CONTINUUM PERCOLATION TRANSPORT EXPONENTS [J].
HALPERIN, BI ;
FENG, S ;
SEN, PN .
PHYSICAL REVIEW LETTERS, 1985, 54 (22) :2391-2394
[6]  
JARIC M, 1990, QUASICRYSTALS
[7]   CHARACTERIZATION AND DECORATION OF THE TWO-DIMENSIONAL PENROSE LATTICE [J].
KUMAR, V ;
SAHOO, D ;
ATHITHAN, G .
PHYSICAL REVIEW B, 1986, 34 (10) :6924-6932
[8]   PERCOLATIVE CONDUCTION AND THE ALEXANDER-ORBACH CONJECTURE IN 2 DIMENSIONS [J].
LOBB, CJ ;
FRANK, DJ .
PHYSICAL REVIEW B, 1984, 30 (07) :4090-4092
[9]  
Penrose R., 1979, MATH INTELL, V2, P32, DOI [DOI 10.1007/BF03024384, 10.1007/BF03024384]
[10]  
PROCACCIA I, 1991, P MINIWORKSHOP NONLI