RELATION BETWEEN PHYSICAL AND GRAVITATIONAL GEOMETRY

被引:385
作者
BEKENSTEIN, JD [1 ]
机构
[1] HEBREW UNIV JERUSALEM,RACAH INST PHYS,IL-91904 JERUSALEM,ISRAEL
来源
PHYSICAL REVIEW D | 1993年 / 48卷 / 08期
关键词
D O I
10.1103/PhysRevD.48.3641
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The appearance of two geometries in a single gravitational theory is familiar. Usually, as in the Brans-Dicke theory or in string theory, these are conformally related Riemannian geometries. Is this the most general relation between the two geometries allowed by physics? We study this question by supposing that the physical geometry on which matter dynamics takes place could be Finslerian rather than just Riemannian. An appeal to the weak equivalence principle and causality then leads us to the conclusion that the Finsler geometry has to reduce to a Riemann geometry whose metric, the physical metric, is related to the gravitational metric by a generalization of the conformal transformation involving a scalar field.
引用
收藏
页码:3641 / 3647
页数:7
相关论文
共 17 条