The rate of consumption of dandelion leaves per g earthworm dry weight per week was described by non-linear functions of soil temperature, soil water potential, and food availability. The optimum temperature and soil water potential for food consumption are about 22-degrees-C and -7 kPa, respectively. Zero consumption occurred at about -40 kPa. Food consumption increased with greater food availability, but only up to 1.05 (dandelion) and 1.23 (grass) g dry weight per g earthworm dry weight per week at 15-degrees-C. A general consumption function to account for all three environmental factors is given. The assimilation rate per g earthworm dry weight per week was defined as the sum of the growth rate and the maintenance rate. Maintenance was calculated according to respiratory measurements reported previously, whereas growth was measured. High temperatures and limiting environmental conditions, such as a low food availability and a low soil water potential, led to an increase in the assimilation efficiency of Lumbricus terrestris. At -7 kPa and 15-degrees-C, L. terrestris assimilated 55 and 43% of the ingested dandelion if 0.25 and 1.0 g dry weight of food was available per g earthworm dry weight per week, respectively. It is concluded that L. terrestris has a strong, direct effect on the decomposition of highly palatable plant materials.