STRUCTURAL INVARIANCE AND THE STATISTICS OF QUASI-ENERGIES

被引:25
作者
LEYVRAZ, F
SELIGMAN, TH
机构
[1] Laboratorio de Cuernavaca, Instituto de Fisica, University of Mexico (UNAM), Mexico City
关键词
D O I
10.1016/0375-9601(92)90516-O
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the theory of unitary representations of classical canonical transformations we discuss the time evolution operator for a periodically time dependent system over one period. The concept of structural invariance is introduced to classify the classical evolution. This permits us to derive the statistical behaviour of quasi-energies in terms of random matrix statistics.
引用
收藏
页码:348 / 352
页数:5
相关论文
共 19 条
[1]   SEMICLASSICAL LEVEL SPACINGS WHEN REGULAR AND CHAOTIC ORBITS COEXIST [J].
BERRY, MV ;
ROBNIK, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (12) :2413-2421
[2]  
BOHIGAS O, 1986, P C QUANTUM CHAOS ST
[3]   RANDOM-MATRIX PHYSICS - SPECTRUM AND STRENGTH FLUCTUATIONS [J].
BRODY, TA ;
FLORES, J ;
FRENCH, JB ;
MELLO, PA ;
PANDEY, A ;
WONG, SSM .
REVIEWS OF MODERN PHYSICS, 1981, 53 (03) :385-479
[4]  
Cartan E., 1935, ABH MATH SEM HAMBURG, V11, P116
[5]  
Casati G., 1979, LECTURE NOTES PHYSIC, V93, P334, DOI DOI 10.1007/BFB0021757
[6]   CANONICAL-TRANSFORMATIONS TO ACTION AND ANGLE VARIABLES AND THEIR REPRESENTATIONS IN QUANTUM-MECHANICS .3. THE GENERAL PROBLEM [J].
DEENEN, J ;
MOSHINSKY, M ;
SELIGMAN, TH .
ANNALS OF PHYSICS, 1980, 127 (02) :458-477
[7]  
Dirac PAM, 1947, PRINCIPLES QUANTUM M
[8]   A BROWNIAN-MOTION FOR EIGENVALUES OF A RANDOM MATRIX [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (06) :1191-+
[9]   ERGODIC BEHAVIOR IN THE STATISTICAL-THEORY OF NUCLEAR-REACTIONS [J].
FRENCH, JB ;
MELLO, PA ;
PANDEY, A .
PHYSICS LETTERS B, 1978, 80 (1-2) :17-19
[10]  
HUA LK, 1963, HARMONIC ANAL FUNCTI